Dec. 9th. 2022 ABC symposium

Introduction to

the Korea National Genome Project

Ji-Hwan Park

Korea Bioinformation Center (KOBIC)

Korea Research Institute of Bioscience & Biotechnology (KRIBB)

Why do we need the National Genome Project?

Drastic advances in high-throughput sequencing and data analysis and sharing technologies

A new wave of population genomics & precision medicine

Why do we need the National Genome Project?

National genomic projects have been launched in > 41 countries

Stark *et al.*, *AJHG* (2019) Kovanda et al., *BMC Human Genomics* (2021)

Our Mission

The National Genome Project

Providing large-scale genomic & clinical data to scientific & industrial community in the purpose of studying precision medicine,

while protecting the participants' privacy

Workflow of the NGP

Cohorts in the NGP, pilot phase (2020 – 2022)

	genome	The pilot phase of the NGP provides and clinical information from up to 25,000 samples :
Rare	Rare Disease (RD)	Total 15,000 participants (predominantly trio)
nal Ithy	Normal Participants (KoGES)	Total 5,000 participants
Norn /Heal	Normal Participants (KGP)	Total 2,383 participants
ently rable	Alzheimer's Disease (AD)	Total 500 Alzheimer's disease patients and 500 normal participants
Curre	Autism Spectrum Disorder (ASD)	Total 849 participants (>200 patients & their parents; >149 families)
Cancer	Colorectal Cancer (CRC)	Total 300 patients (600 tumor and paired normal adjacent tissues)
	Non-Smoking Lung Adenocarcinoma (NSLA)	Total 84 never-smoker lung adenocarcinoma patients (168 tumor and paired normal adjacent tissues)
KKK	X	Kobic 국가생명연구자원정보센터 Korea Bioinformation Center

- Clinical data from 23,833 participants (= 25,000 samples) have been collected (from 15,000 RD, 300 CRC, 84 NSLA, 849 ASD, 1,000 AD, 1,600 KGP, & 5,000 KoGES cohorts)
- 20,000 whole-genome sequencing (WGS) data have been newly generated and 5,000 WGS data were collected from NGP cohort partnership

Progress of the NGP pilot phase, as of 1st Nov. 2022

Collection of Samples & Data

Collection of samples & clinical data based on patient consent

Bioethics and BioSafety Act, Republic of Korea

Participants' consent

■ 생명윤리 및 안전에 관한 법률 시행규칙 [별지 제34호서식]

인체유래물 연구 동의서 (앞쪽) 동의서 관리번호 성명 생년월일 인체유래물 주 소 기증자 성별 전화번호 성 명 관계 법 정 대 리 인 전화번호 Institutional Review Board 성 명 연구책임자 전화번호 이 동의서는 귀하로부터 수집된 인체유래물등(인체유래물과 그로부터 얻은 유전정보를 말합니다)을 질병의 진단 및 치료 등의 연구에 활용하기 위한 것입니다. 동의는 자발적으로 이루어지므로 아래의 내용을 읽고 궁금한 사항은 상담

이 중의서는 귀하도구려 구입된 인세류대출당(인세휴대출과 그로구터 일은 유신정모를 절압니다)을 절명의 신단 및 지묘 법 개발 등의 연구에 활용하기 위한 것입니다. 동의는 자발적으로 이루어지므로 아래의 내용을 읽고 궁금한 사항은 상담 자에게 묻고 질문할 기회를 가지고 충분히 생각한 후 결정하시기 바라며, 이 동의서에 대한 동의 여부는 귀하의 향후 검 사 및 치료 등에 어떤 영향도 미치지 않습니다.

- The research participation agreements and plans are approved by multiple Institutional Review Boards (IRBs).
- Blood or saliva samples and clinical information are collected, according to the strictly managed quality control (QC) processes.

Approval of research plans

Rare disease recruitment

The rare disease patients take part in the NGP via the following hospitals:

Seoul National University Hospital (SNUH)

Pusan National University Yangsan Hospital (PNUYH)

Seoul National University Bundang Hospital (SNUBH)

Inha University Hospital (INHAUH)

Jeonbuk National University Hospital (JBUH)

Chungbuk National University Hospital (CBNUH)

Samsung Medical Center (SMC)

The Catholic Univ. of Korea Seoul St.Mary's Hospital (SSMH)

Severance Hospital (YUHS)

Cheju Halla General Hospital (CHH)

Chonnam National University Hwasun Hospital (CNUHH)

Wonju Severance Christian Hospital (WSCH)

Asan Medical Center (AMC)

Kyungpook National University Chilgok Hospital (KNUH)

Ajou University Hospital (AJOUMC)

Inje University Busan Paik Hospital (INJE)

Chungnam University Hospital (CNUH)

NGP cohort partnership

In cooperation with previous projects (NGP cohort partnership), NGP collected diverse cohort datasets,

Current research & medical staffs in NGP cohort partnership may participate in the next phase of NGP, which aims to collect the data from > 1M participants

NGP cohort partnership

The NGP cohort partnership encompasses diverse types of cohorts (cancer and currently incurable disease patients & normal/healthy participants)

Following implications from the cohort partnership:

Establishment of the standard operating procedure (SOP) for diverse types of diseases and healthy participants

	≣
C	

- Ethical, Legal and Social Implications (ELSI)
 - (*e.g.*, Consent forms and research plans regarding the prospective / retrospective studies in the NGP)
- <u>Strategies for sample and data collection</u>
 (e.g., sampling and banking solid tumors rather than blood)
- Data standardization or strategies for update of clinical information (*e.g.*, trajectory analysis of clinical information & outcomes)

Standardization & QC of clinical information

The Research Environment Platform provides structured clinical data:

KKIRK

 Kobic 국가생명연구자원정보센터 Korea Bioinformation Center

Genome sequencing

Whole-genome sequencing (WGS) process

KODIC 국가생명연구자원정보센터

KKIKK

As of 1st Nov. 2022, a total of **20,000 samples were sequenced**

Rare Disease (RD)

15,000 participants

Normal Participants (KoGES)

5,000 participants

For each sample, 138 GBase (>30X) on average was generated

WGS data were generated by Macrogen, DNALink, TheragenBio, and LabGenomics

Sequence data QC

For each sample, **138 GBase (>30X) on average** was generated

Phred Q30	91.6%
De-duplicate read	87.8%
Mappable read	99.8%

Genome Coverage	≥ 1X	94.9%
Genome Coverage	≥ 10X	94.3%
Genome Coverage	≥ 30X	86.7%

Data processing & Quality control

WGS data analysis & QC

kobic Data processing and QC pipelines for the WGS data have been established

to call germline or somatic variants with high consistency and confidence.

Data processing and QC pipelines for the WGS

Data processing and QC pipelines for the WGS data have been established to call germline or somatic variants with high consistency and confidence.

Germline mutation

GATK-Spark: MapReduce-based distributed parallel computing GATK-Spark pipeline performs <u>3~4 times faster</u> than Java-based GATK

Somatic mutation

FPGA-based DRAGEN platform, the Hardware accelerated variant analysis, enables somatic variant analysis **20 times faster** than GATK-Spark (60 min per sample)

KODIC 국가생명연구자원정보센터

Research Environment Platform (REP)

The platform provides processed WGS data and de-identified clinical information, enabling the researchers to conduct a multitude of integrative data analyses in the secured workspace.

Rare disease analysis

Rare disease data analysis (example)

Sample_ID: 405XXXYYYY Sex: Male Age: <7 Diagnosis : Neurodevelopmental disorders (Delayed speech and language development)

Analysis Name (Proj 405XXXYY	ject) YY			Age -					Et -	hnicity	
Phenotype: X-	-linked alpha-thalassemi 🖣	Age of Onset D Birth - 1 Year (i) 20	isease Prevalence Mode of Inheritance 00 Individuals (i) X-Linked		The sym - bone d	ptoms o eformit	of thalass	semia e cially in t	he face		
Gene ATRX C Transcript(s) NM_138270.5	Variant c.2671G>C p.E891Q loss	Population Frequenc Genotype: Impact:	y: 0% gnomAD Hom (100.00% Allele Fraction) Missense		 - dark urine - delayed growth and development - excessive tiredness and fatigue 						
Open	< Previous	Next > Use Classification	View Bibliography		- yellow	or pale	skin		_		
Filter Settings 🕶	Search		4913405 variants								View Settings -
Gene		Alteration	Phenotype	Proband (i)	Mode of Inheritance	Function	Impact	CADD Score	Max Population Frequency	Variant Findings	HGMD Accession
ATRX	1	c.2671G>C p.E891Q	X-linked alpha-thalassemia-mental retard		X-linked	loss	Missense	14.53	0% gnomAD	74	
FECH	2	c.315-48T>C	Erythropoietic protoporphyria		recessive	loss	-	<10	34.34% gnomAD (Latino)	138	CS020196 (DFP)
GJB2	U	c.109G>A p.V37I	Autosomal recessive deafness type 1A		recessive	loss	Missense	21.7	8.35% gnomAD (East Asian)	1346	CM000016 (DM)
NPHP	4 !	c.2818-2A>T	Nephronophthisis		recessive	loss	Splicing	24.4	0% gnomAD	15	CS057899 (FP)
ΟΤΟΑ		c.2122G>T p.E708*	Autosomal recessive deafness type 22		recessive	normal	Stop Gain	39	1.03% gnomAD (East Asian)	18	CM199073 (DM)
PRMT	3	c.1337A>G p.N446S	Cancers and Tumors		-	loss	Missense	23.1	0% gnomAD	2	-

Rare Disease (RD)

8,000 participants

Genome Sequencing for Undiagnosed Genetic Diseases

Annual Review of Medicine

What Has the Undiagnosed Diseases Network Taught Us About the Clinical Applications of Genomic Testing?

David R. Murdock,¹ Jill A. Rosenfeld,¹ and Brendan Lee^{1,2}

¹Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; email: blee@bcm.tmc.edu

²Texas Children's Hospital, Houston, Texas 77030, USA

Genetic testing has undergone a revolution in the last decade, particularly with the advent of next-generation sequencing and its associated reductions in costs and increases in efficiencies. The Undiagnosed Diseases Network (UDN) has been a leader in the application of such genomic testing for rare disease diagnosis. This review discusses the current state of genomic testing performed within the UDN, with a focus on the strengths and limitations of whole-exome and whole-genome sequencing in clinical diagnostics and the importance of ongoing data reanalysis. The role of emerging technologies such as RNA and long-read sequencing to further improve diagnostic rates in the UDN is also described. This review concludes with a discussion of the challenges faced in insurance coverage of comprehensive genomic testing as well as the opportunities for a larger role of testing in clinical medicine.

Table 1 Comparison of reportable variant types detected by different genetic testing assays

Genetic test	SNVs/ Indels	CNVs	Mosaic variants	Repeat expansions	Balanced and complex SVs	mtDNA	Genes tested	VUS potential ^a	Cost ^a
Sanger	Yes	No	Limited	No	No	If included	Single-few	+	\$\$
CMA	No	Yes	Yes (CNV only)	No	No	No	Up to ~20,000	++	\$\$
NGS panel	Yes	Yes	Yes	No	No	If included	Few-hundreds	++	\$
WES	Yes	Limited	Limited (depends on coverage)	No	No	If included	~20,000 (coding regions only)	+++	\$\$\$
WGS	Yes	Yes	Limited (depends on coverage)	Yes	Yes	Yes	~20,000 (coding and noncoding regions)	++++	\$\$\$\$

Table 2 Comparison of published RNA-seq studies and their contrasting approaches and results

Reference	UDN study	Phenotypes	Tissue	Events detected	Analysis method ^a	RNA-seq diagnostic rate
35	No	Neuromuscular	Muscle	Splicing	Candidate + outlier	35%
34	No	Neuromuscular	Muscle, fibroblasts, fibroblast-derived myotubes	Expression, splicing, ASE	Outlier	36%
29	Yes	Multiple (neurologic most common)	Whole blood	Expression, splicing, ASE	Outlier	7.5%
30	Yes	Multiple (neurologic most common)	Whole blood, fibroblasts, muscle, bone marrow	Expression, splicing, ASE	Candidate	18%
23	Yes	Multiple (neurologic most common)	Whole blood, fibroblasts	Expression, splicing, ASE	Outlier	17%

Long-read sequencing is necessary for the undiagnosed rare diseases

Murdock (2022) Ann Rev Med

The Korean Pan-genome Project

The complete sequence of a human genome

T2T consortium to the Human Pangenome Project

Needs for a pan-genome (genome graph)

genetics

Fast and accurate genomic analyses using genome graphs

TECHNICAL REPORT

https://doi.org/10.1038/s41588-018-0316-4

KRIBB

Rakocevic (2020) Nat Genet

Annual Review of Genomics and Human Genetics The Need for a Human Pangenome Reference Sequence

Karen H. Miga¹ and Ting Wang²

¹UC Santa Cruz Genomics Institute and Department of Biomedical Engineering, University of California, Santa Cruz, California 95064, USA; email: khmiga@ucsc.edu

²Department of Genetics, Edison Family Center for Genome Sciences and Systems Biology, and McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA; email: twang@wustl.edu

KODIC 국가생명연구자원정보센터

Construction of the human pan-genome

2. Construction of complete reference genome (template)

1. De novo assembly of

5. Pan-genome based alignment

3. Identification of variants

(SNVs, small INDELs, & SVs)

Science (2021), Genome biology (2020)

Roadmap of the Korea pan-genome project

During the phase 1, we performed *de novo* assembly of the human WGS data, generated from the long-read sequencing technique (PacBio HIFI)

 The Korea National Genome Project (NGP) enables the researchers to explore clinical and genomic data from 23,833 participants (25,000 samples) in the secure cloud service (Research Environment Platform)

KOBIC launched the Korean Pan-genome Project
 for the better performance to identify the uncharted structural variations
 and integrate numerous genetic variants from Korean population

Acknowledgement

	Dr. Seon-Young Kim Jin Ok Yang Ik Su Byeon Dr. Jong-Hwan Kim Dr. Kiwon Jang Jae Ho Lee Gun Woo Park	Dr. Byungwook Lee Dr. Sang-Ok Kim Bang-Hyuck Lee Dr. Jongbum Jeon Dr. Wonyong Jeong Young Mi Sim Dr. Seon-Kyu Kim	Dr. Pan-Gyu Kim GunHwan Ko Jong-Cheol Yoon Dr. Jaeeun Jung Taeyeon Hwang Dongmin Jang Dr. Soobok Joe
Kişti www.kisti.re.kr	Dr. Jun-Hak Lee	Dr. Hyojin Kang	Dr. Yukyung Jun
KHIDI	Dr. Kwan Ik Lee	Dr. Misook Kwak	Dr. Jong-suk Park
Keit 한국산업기술평가관리원	Dr. Kang-Woo Lee	Dae Sung Kim	
질병관리청 KDCA	Dr. Hyun-Young Park Dr. Myungguen Chung Namhee Kim	Dr. Hee Youl Chai Dr. Min Jin Go	Dr. Eugene Kim Dr. Jung-Eun Kim
<mark>사 울 대 학 교</mark> SEOUL NATIONAL UNIVERSITY	Dr. Murim Choi	Dr. Jun Kim	Jeongeun Lee
www.korea UNIVERSITY	Dr. Joon-Yong An	Lizzy Choi	Ganghee Lee
	NGP co	hort Partnership	
SE		YONSEI UNIVERSITY CHOSUN UNIVERSITY	국립암센터
	Support	ted & Funded by:	
Ministry	of Health Ministry of S	cience and ICT Ministry of T	rade.

and Welfare

KKIBB

Industry and Energy

Thank you!

