How to increase power of GWAS: pathway and meta analysis

UNIST Dougu Nam

Single Nucleotide Polymorphism (SNP)

- A variation at a single site in DNA, is the most frequent type of variation in the genome (~ over 10 million)
- Responsible to most <u>genetic disease</u> and other phenotypes
- Genome-wide association study (GWAS) seeks to find relevant SNPs that may cause specific disease

- Wikipedia

GWAS: Case-Control study

- Unlike gene expression data, SNP array provides categorical data (AA, Aa, or aa)
- We are interested in identifying <u>which</u> <u>SNP is associated</u> <u>with a given disease</u>

GWAS: Quantitative Trait study

- <u>No partition</u> on samples
- Each sample has some <u>continuous</u> <u>phenotype values</u> such as height, blood pressure

General Problems in GWAS

- Needs multiple testing correction for a million of *p*-values
- A very stringent cutoff (e.g. p=10^-8) is used to yield only a small number of SNPs
- Many moderate but meaningful associations outside the cutoff is lost. This is very inefficient and wasteful
- It is not easy to discuss biology only with a small number of significant SNPs

Tip of Iceberg

Increasing power of GWAS: gene-based test

- Summarize SNPs to genes
- VEGAS method: Given k SNP p-values for a gene, <u>correlated p-values are</u> <u>simulated</u> using multivariate normal distribution, and the summarized statistic values are assessed (Liu et al. AJHG 2010)

Increasing power of GWAS: gene-set-based test

- Pathway (gene-set) analysis was also considered for GWAS data to find missing heritability
- This approach aims to detect moderate but coordinated associations within a gene set (as well as strong signals)
- GSEA was firstly introduced for GWAS genotype data (Wang et al. AJHG 2007): <u>requires heavy</u> <u>calculation</u>

Increasing power of GWAS: gene-set-based test

GSA-SNP (Nam et al. 2010 NAR): Uses <u>only summary *p*-values</u> to calculate pathway statistic

How to improve the method?: GSA-SNP2 (Yoon et al. 2018 NAR)

- SNP size effect
- SNP-SNP correlation adjustment

Monotone cubic spline

 $Adj(g_i) = -\log(\text{best } p_i) - C(g_i)$

• Pathway score:

$$Z\left(P_{j}\right) = \frac{\overline{P_{j}} - m}{\sigma/\sqrt{N_{j}}}$$

Existing methods

- MAGENTA (PLoS Genetics, 2010):
 - Adjust for confounding factors using regression model

$$Z_g^{BestSNP} = \alpha \cdot d_g + \beta \cdot n_g + \delta \cdot u_g + \gamma \cdot h_g + \eta \cdot c_g + \kappa \cdot l_g + r_g$$

Strict false positive controlVery low power

Distribution of pathway Z-scores

- Distribution of the 674 Reactome pathway Z-statistic of adjusted gene scores for GWAS data simulated using 1000 Genomes data. Standard normal distribution is fitted (blue curve)
- This implies we don't have to deal with the heavy genotype data for pathway analysis

Simulation test

- Used real genotype data: 1000 Genomes
- Simulated phenotypes using linear model
 - False positive control:

$$Y = \beta_1 X_1 + \cdots \beta_k X_k + \varepsilon$$

– Statistical Power

 $Y = \beta_1 X_1 + \cdots + \beta_k X_k + \gamma (G_1 + \cdots + G_M) + \varepsilon$

Simulation test

 Background heritability:

$$h_b^2 = \frac{Var(\beta_1 X_1 + \dots + \beta_k X_k)}{Var(Y)}$$

 Gene-set heritability:

$$h_g^2 = \frac{Var(\gamma(G_1 + \dots + G_M))}{Var(Y)}$$

 Used only 10,000 samples

Tests for real GWAS data

- Used publicly available summary data from DIAGRAM and GIANT consortia
- Gold standard pathways for T2D: collected by third party, Morris et al.
- Gold standard pathways for human height: collected from the literature

T2D data analysis results by GSA-SNP2

Set	Size	Count	z-score	Adj. z-sc	Adj. p-va	Adj. q-va	List of Genes		
KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG	25	25	6.48959	6.83566	0	1E-08	HHEX (6.949345); HNF1A (4.566419); HI
REACTOME_REGULATION_OF_BETA_CELL_DEVELOPMENT	30	30	3.22243	4.71386	1.2E-06	0.00075	HNF1A (4.5664)	19); HNF1B	(4.105567); S
REACTOME_PRE_NOTCH_TRANSCRIPTION_AND_TRANSLATION	29	22	3.94822	4.71583	1.2E-06	0.00075	NOTCH4 (2.637	982); E2F3	(2.469393); N
KEGG_ALLOGRAFT_REJECTION	38	35	5.64573	4.46046	4.1E-06	0.00127	HLA-DQA1 (4.6	94312); HL/	A-DRB1 (4.41
KEGG_GRAFT_VERSUS_HOST_DISEASE	42	38	4.90796	4.38941	5.7E-06	0.00142	HLA-DQA1 (4.6	94312); HL/	A-DRB1 (4.41
REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_BETA_CELLS	20	20	2.30829	4.25435	1E-05	0.00218	HNF1A (4.5664)	19); SLC2A2	(1.764304);
PID_HNF3B_PATHWAY	45	45	2.49585	4.24102	1.1E-05	0.00218	HNF1A (4.5664)	9); HNF1B	(4.105567); K
KEGG_TYPE_I_DIABETES_MELLITUS	44	42	5.75436	4.25228	1.1E-05	0.00218	HLA-DQA1 (4.6	94312); HL/	4-DRB1 (4.41
KEGG_TYPE_II_DIABETES_MELLITUS	47	45	4.11348	4.24052	1.1E-05	0.00218	KCNJ11 (4.0230	13); ABCC8	(3.506411);
BIOCARTA_CELLCYCLE_PATHWAY	23	23	2.89012	4.06483	2.4E-05	0.003	CDKN2B (3.982	983); CDKN	2A (3.530220
BIOCARTA_VIP_PATHWAY	29	25	2.7754	4.00291	3.1E-05	0.00355	PLCG1 (3.20959	2); CHUK (3.166127); NF
PID_LYSOPHOSPHOLIPID_PATHWAY	66	65	3.61517	3.98202	3.4E-05	0.00355	ADCY5 (3.7063)	1); BCAR1	(3.637863); P
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS	11	10	3.4107	3.83483	6.3E-05	0.00603	PDHA2 (3.2114	52); VARS (1.872344); LA
REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION	24	24	2.53806	3.75272	8.7E-05	0.00779	RARS (3.917630); CARS (2.6	632525); EEF1
REACTOME_NOTCH_HLH_TRANSCRIPTION_PATHWAY	13	11	3.25256	3.7318	9.5E-05	0.0079	NOTCH4 (2.637	982); NOTC	CH2 (2.03075)
REACTOME_POTASSIUM_CHANNELS	98	97	4.96274	3.61476	0.00015	0.01171	KCNQ1 (4.7381	21); KCNJ1	1 (4.023013);
KEGG_NOTCH_SIGNALING_PATHWAY	47	47	2.11343	3.60703	0.00015	0.01171	NOTCH4 (2.637	982); NOTC	CH2 (2.03075)
PID_AP1_PATHWAY	70	68	10.4268	3.53142	0.00021	0.01368	TCF7L2 (6.2527	59); CDKN2	A (3.530220);
PID_NOTCH_PATHWAY	59	59	2.62607	3.54338	0.0002	0.01368	NOTCH4 (2.637	982); FBXW	7 (2.588611);
KEGG_ASTHMA	30	28	4.71906	3.49211	0.00024	0.01494	HLA-DQA1 (4.6	94312); HL/	A-DRB1 (4.41
REACTOME_INTEGRATION_OF_ENERGY_METABOLISM	120	110	3.49163	3.42256	0.00031	0.01842	KCNJ11 (4.0230	13); ADCY5	(3.706311);
REACTOME_RIP_MEDIATED_NFKB_ACTIVATION_VIA_DAI	18	17	2.00516	3.27502	0.00053	0.02994	CHUK (3.16612)	7); AGER (2	.398901); NFI
BIOCARTA_AKAP95_PATHWAY	12	12	1.54971	3.2586	0.00056	0.02994	PRKACG (1.742	986); PRKA(CB (1.675484
KEGG_VIRAL_MYOCARDITIS	73	68	4.9149	3.26646	0.00054	0.02994	HLA-DQA1 (4.6	94312); HL/	A-DRB1 (4.41
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION	89	81	3.7768	3.23911	0.0006	0.02994	HLA-DQA1 (4.6	94312); HL/	A-DRB1 (4.41
REACTOME_PKA_MEDIATED_PHOSPHORYLATION_OF_CREB	18	16	3.15014	3.22467	0.00063	0.03024	ADCY5 (3.7063)	1); ADCY7	(2.166519); F
REACTOME_TRAF6_MEDIATED_NFKB_ACTIVATION	21	20	2.12798	3.21201	0.00066	0.03044	CHUK (3.16612)	7); AGER (2	.398901); NFI
BIOCARTA_IL5_PATHWAY	10	10	3.38768	3.18371	0.00073	0.03238	HLA-DRB1 (4.41	5043); HLA	-DRA (3.1011
BIOCARTA_RNA_PATHWAY	10	10	1.92901	3.15412	0.0008	0.03461	CHUK (3.16612)	7); NFKB1 (1.923206); TP
REACTOME_PRE_NOTCH_EXPRESSION_AND_PROCESSING	44	37	2.4246	3.1376	0.00085	0.0354	NOTCH4 (2.637	982); E2F3	(2.469393); N
KEGG_AUTOIMMUNE_THYROID_DISEASE	53	50	5.03694	3.11283	0.00093	0.03727	HLA-DQA1 (4.6	94312); HL/	A-DRB1 (4.41
BIOCARTA_G1_PATHWAY	28	28	2.40209	3.10072	0.00097	0.03761	CDKN2B (3.982	983); CDKN	2A (3.530220
ST_GAQ_PATHWAY	28	26	1.846	3.08999	0.001	0.03769	CFB (3.240930);	NFKBIL1 (3	3.173078); PL
KEGG_DILATED_CARDIOMYOPATHY	92	87	4.04287	3.091	0.001	0.03769	ADCY5 (3.7063)	1); TNF (3.	325753); ITG
REACTOME_ION_TRANSPORT_BY_P_TYPE_ATPASES	34	30	3.27508	3.06071	0.0011	0.03934	ATP2C1 (1.7892	29); ATP9A	(1.481776); /
BIOCARTA_TID_PATHWAY	19	19	1.90726	3.04395	0.00117	0.04023	TNF (3.325753);	HSPA1A (2	2.215279); NF
KEGG_SMALL_CELL_LUNG_CANCER	84	81	3.67783	3.04551	0.00116	0.04023	CDKN2B (3.982	983); CHUK	(3.166127);
KEGG_PROSTATE_CANCER	89	85	9.68336	3.02374	0.00125	0.04097	TCF7L2 (6.2527	59); CHUK (3.166127); C
REACTOME_REGULATION_OF_INSULIN_SECRETION	93	85	3.16827	3.00162	0.00134	0.04223	KCNJ11 (4.0230	13); ADCY5	(3.706311);

Tests for real GWAS data

Computing time

Table 2 Running times for eight pathway analysis programs for GWASsummary data

Method	Time	Permutation		
GSA-SNP2	1.53 min			
GSA-SNP1	1.49 min			
MAGMA-mean	3.03 min			
MAGMA-top1	34.85 min			
MAGMA-multi	41.85 min			
iGSEA4GWAS	30 min			
MAGENTA	114.18 min	10 000		
Gowinda ($P = 0.001$)	0.62 min	10 000		
Gowinda $(P = 0.01)$	0.80 min	10 000		
Gowinda $(P = 0.05)$	2.01 min	10 000		
INRICH $(P1 = 1E-6)$	0.85 min	10 000		
INRICH $(P1 = 1E-4)$	2.41 min	10 000		
sARTP	10.41 days	100 000		

Network analysis

Increasing power of GWAS: Meta-analysis

- Combining *p*-values from independent experiments
 - Fisher's method: $X_{2k}^2 \sim -2\sum_{i=1}^k \ln(p_i)$
 - Stouffer's method: Z-scores rather than pvalues, allowing incorporation of study weights

$$Z\sim rac{\sum_{i=1}^k w_i Z_i}{\sqrt{\sum_{i=1}^k w_i^2}}$$

Increasing power of GWAS: Meta-analysis

	Fixed effect	Random effect				
Inputs	β_i - effect size estimate for study i					
	SE_i - standard error for study i					
Intermediate Statistics	$w_{i} = \frac{1}{SE_{i}^{2}}$ $SE = \sqrt{\frac{1}{\sum_{i} w_{i}}}$ $\beta = \sum_{i} \frac{\beta_{i} w_{i}}{\sum_{i} w_{i}}$	$\tau^{2} = \frac{Q - N_{i} + 1}{C}$ $w_{i}^{*} = \frac{1}{SE_{i}^{2} + \tau^{2}}$ $SE = \sqrt{\frac{1}{\sum_{i} w_{i}^{*}}}, \beta = \sum_{i} \frac{\beta_{i} w_{i}^{*}}{\sum_{i} w_{i}^{*}}$				
Meta Z-score	Z =	$=\frac{\beta}{SE}$				
Meta p-value	P = 24	$\Phi(-Z)$				

More powerful

More conservative

Pitfalls of existing methods

- Combines all the given *p*-values (or effect sizes). This is not always beneficial because...
 - Some cohorts may not be associated
 - Some cohort data may have low qualities
- Can we select only 'associated' cohorts for each SNP and integrate their *p*values?

ORDMETA method

- Combines *p*-values from independent experiments based on joint order distribution
- *p_i~Unif*(0,1) (*i*=1,...,N) : each independent
 p-value has a uniform distribution
- $(p_{(1)}, p_{(2)}, ..., p_{(N)})$: *N* ordered *p*-values have joint order distribution where each ordered *p*-value has a beta distribution

 $p_{(i)} \sim Beta(i, N - i + 1)$

ORDMETA method

Beta distribution (N=10)

Density

ORDMETA method

 We calculate '<u>p-value for the minimum</u> <u>marginal p-value</u>' of the joint order distribution

Example: GIANT-BMI data analysis

1	SNPNAME	P_African	P_EastAsian	P_Hispanic	P_SouthAsiar	P_ORDMETA	P_METAL	P_Fixed	P_Random	ORDMETA_C
8	rs7561317	0.0067	0.067	0.0023	0.014	9.97E-06	8.88E-07	1.21E-06	1.21E-06	1234
9	rs7647305	4.30E-05	0.14	0.023	0.033	0.0001387	2.90E-07	2.19E-07	2.19E-07	134
10	rs10938397	2.40E-06	0.22	0.042	0.093	3.78E-05	4.40E-07	1.83E-06	0.002376	1
11	rs2206277	2 30E-06	0 35	6.00E-04	0.0067	1 19E-06	4 13E-08	1 79E-08	0.022122	134
12	rs987237	0.00067	0.11	0.00071	0.0037	2.02E-07	4.96E-06	3.49E-06	0.073536	134
13	rs2301680	0.05	0.018	0.092	9.50E-05	3.53E-05	4.92E-07	3.52E-07	3.52E-07	1234
14	rs7901695	0.048	0.95	0.0022	1.40E-07	2.22E-06	2.47E-08	4.85E-09	0.00156	4
15	rs4506565	0.056	0.81	0.00021	6.30E-08	5.27E-07	6.38E-09	1.04E-09	0.003102	34
16	rs7903146	0.00052	0.82	3 90E-06	5.60E-08	1 82F-10	1 24F-12	921F-14	648E-06	3.4
17	rs12243326	0.58	0.78	5.60E-06	1.30E-05	2.03E-09	3.10E-05	4.01E-05	0.094958	34
18	rs12429545	0.00019	0.27	0.097	0.0046	0.00024626	5.96E-07	9.58E-06	0.000809	14
19	rs9930333	0.16	0.00072	1.90E-06	1.50E-09	4.33E-11	5.38E-14	2.76E-13	0.000979	34
20	rs1421085	1.40E-06	0.004	1.90E-08	1.50E-12	0	3.63E-25	6.76E-26	7.19E-24	134
21	rs1558902	1.70E-06	0.004	2.40E-08	5.90E-13	0	2.36E-25	3.92E-26	5.08E-26	134

Green: significant for the p-value 10⁻⁶

Simulation for false positive control test

 15 cohorts, each containing 2000 samples generated from 1000 Genomes data

100 Effect SNPs

- Effect SNP 1~40: common to all 15 cohorts
- Effect SNP 41~60: specific to cohort 1~5
- Effect SNP 61~80: specific to cohort 6~10
- Effect SNP 81~100: specific to cohort 11~15

• Very small heritability=1E-5

Compared methods: ORDMETA, METAL, fixed effect, random effect and MR-MEGA

Simulation test: comparison of false positive controls

Simulation for power test

 15 cohorts, each contained 2000 samples generated from 1000 Genomes data

100 Effect SNPs

- Effect SNP 1~40: common to all 15 cohorts
- Effect SNP 41~60: specific to cohort 1~5
- Effect SNP 61~80: specific to cohort 6~10
- Effect SNP 81~100: specific to cohort 11~15
- Heritability=0.5
- <u>So, 60% of the effect SNPs are 'associated' in only five</u> <u>cohorts</u>

Simulation test: comparison of powers

All Effect SNPs

Group-specific Effect SNPs

- 15 cohorts (each contains 2000 samples).
- 100 Effect SNPs
 - SNP 1~40: common to all cohorts
 - SNP 41~60: Specific to cohort 1~5
 - SNP 61~80: Specific to cohort 6~10
 - SNP 81~100: Specific to cohort 11~15
- Heritability=0.5
- 20 repetition

Simulation test: detection of associated cohorts

Common Effect SNP Frequency Frequency 11 12 13 14 15 10 11 12 13 14 15 Cohort Cohort

Cohort 11-15 specific

Cohort 1-5 specific

Many Thanks!

- Our Lab
 - Hai, C. T. Nguyen
 - Sora Yoon
 - Jinhwan Kim
 - Juok Cho
 - Soungou Kim
 - Bukyung Baik
- SNU

– Prof. Yun Joo Yoo

