

Methods for identifying disease causal or susceptibility mutations from high-throughput sequencing data

August 29-31, 2018 (Miaoxin Li; 李淼新) Sun Yat-sen University & the University of Hong Kong

local genotypes Statistical Genetics + Probe Set ID Genotypes SNP A-1813205 BB SNP_A-1880143 AB **Bioinformatics** SNP_A-4215517 AA SNP A-1828242 AA AA SNP_A-2029913 BB SNP A-1929900 AB SNP A-1818663 SNP A-2192352 AA AA SNP_A-4218271 statistical genetic mapping Boost power!!! **Integrative computational frameworks Biological resources** http://www.abcam. cn/index.html?page config=resource&rid 2 =12189&pid=10629

The general procedure of detecting diseasecasual mutations using high-throughput sequencing data

A multilayer automated filtration and prioritization framework

(Mendelian-diseases using exome sequencing data)

Li MX, Gui HS, Kwan SH, Bao SY, Sham PC. A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. *Nucleic Acids Research* (Nucleic Acids Res. 2012 Apr 1;40(7):e53)

Key functions of the three tools for filtration, prioritization and annotation

	KGGSea	ANNOVAR (Version2)	VEP
Quality control	Systematic QC on genotype, variant and	Only by depth and sequencing	No
	subject levels	quality	
Use disease mode	Recessive, dominant compound heterozygous,	Too simple, cannot directly take	No
	de novo and runs of homozygosity.	genotypes of controls; it only works	
		for recessive and dominant modes	
Variants reference databases	dbSNP, 1000 Genomes Project and ESP	Similar to wKGGSeq	Similar to wKGGSeq
Gene annotation	RefGene	RefGene	ENSEMBL
	GENCODE	GENCODE	RefGene
	UCSC knownGene	UCSC knownGene	
		ENSEMBL	
Functional prediction	SLR	Same as wKGGSeq	SIFT
	SIFT		Polyphen2_HDIV
	Polyphen2_HDIV		Polyphen2_HVAR
	Polyphen2_HVAR		
	LRT		
	MutationTaster		
	MutationAssessor		
	FATHMM_score		
	CADD_score		
	GERP++_NR		
	GERP++_RS		
	PhyloP100way_vertebrate		
	29way_logOdds		
Protein-protein interaction and	Yes	No	No
pathway			
Literature	PubMed	No	No
Management of input data	Yes	No	No
Disease-targeted prioritization	Yes	No	No

The summary filtration and prioritization results of three tools in three pedigrees

	KGGSeq	ANNOVAR	VEP		
	Neonatal-o	onset Crohn disease	5		
Initial variants	1196282	68992ª	68992ª		
Retained variants when the causal mutations were kept finally	3	53	4232		
Variant hit by PPIs, pathways or PubMed search	-	-	-		
Additional evidences to highlight the causal mutations	PPI+Pathway+PubMed	-	-		
	Spinoce	erebellar ataxias			
Initial variants	1417935	82465ª	82465ª		
Retained variants when the causal mutations were kept finally	17	29	6501		
Variant hit by PPIs, pathways or PubMed search	- 3 -	-	-		
Additional evidences to highlight the causal mutations	Pa thwa y+PPI	-	-		
	Familial spastic paraplegia				
Initial variants	1017018	63207ª	63207ª		
Retained variants when the causal mutations were kept finally	3	7	5109		
Variant hit by PPIs, pathways or PubMed search	2 -	-	-		

Note: a: as wANNOVAR cannot effectively map variants on VCF data, KGGSeq was used to do the basic quality control on VCF data of affected samples.

When whole genome sequencing data come, ...

1000 subjects

- Sequence variants: around 40 millions
- Genotypes + quality values in <u>compressed</u> format: 250GB

KGGSeq (v0.8-) needs 100+GB RAM and 24+hours to do

downstream prioritization analysis!!!

I. How can the huge amount of sequencing data by analyzed with less RAM and faster speed?

Genotype <u>bit-block encoding</u> algorithm

а

##fileformat=VCFv4.0								S	ub	jec	ts
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	Α	В	С
chr1	4793	rs668235	А	G	596.57	PASS	AC=20	GT	1/1	0/0	./.
chr1	53560		т	С	573.51	PASS	AC=10;	GT	./.	0/0	0/1
chr1	12887054	rs338105	Т	C,G	5572.99	PASS	AC=2,1	GT	1/2	0/0	0/0

	Reference homozygous	Heterozygous Alternati			iomozygous	Missing	
VCF genotype	A/A	A/G G/G				./.	
Bits	00		01 10				11
	Reference homozygous	Heterozygo	ous	Heterozygous		Alternative homozygous	Missing
VCF genotype	A A	A G		G A		G G	. .

9

Compare the size of genotypes in chromosome 1 of 1000 Genomes Project

					·····
	VCF format	Plink linkage format file set	Plink binary genotype format file set	BGT format	KGGSeq binary genotype format file set
Unphased	64.234GB	66.093GB	3.92GB	342MB	^{793MB} ~1%
Phased	64.234GB	66.093GB	a	268MB	990MB
					<u> </u>

Coding advantages

- Flexible for <u>phased and unphased genotypes</u>
- Flexible for variants with <u>multiple alternative</u> alleles
- Facilitate <u>fast computing</u>

Calculate genotypic correlation

Conventional methods

$$r_{i,j} = \frac{n(\sum x_i x_j) - (\sum x_i)(\sum x_j)}{\sqrt{\left[n(\sum x_i^2) - (\sum x_i)^2\right] * \left[n(\sum x_j^2) - (\sum x_j)^2\right]}}$$

 x_i and x_i are genotypes

Time used by a bit-block based algorithm and the conventional algorithm for computing Pearson correlation of genotypes

Number of variants	Bit-block	Conventional	Ratio
4000	0:0:2.59	50:01.36	1:1159
7000	0:0:7.59	2:31:56.48	1:1201
10000	0:0:14.99	5:08:54.14	1:1236
13000	0:0:23.60	8:43:17.78	1:1330
16000	0:0:35.18	13:18:33.96	1:1362
	Hour: Minute: Second	Hour: Minute: Second	ii

Nucleic Acids Res. 2017 Jan 23. pii: gkx019

<u>Sectional accessing</u> and optimized parsing text algorithm

- Sectional and random access of compressed text lines (block-wised compressed format)
- Calculate initial positions in a compressed file to partition the file into approximately equal parts.
- Search valid start and end reading positions around the initial positions and reserve the truncate lines
- 3. Read and parse the compressed data from the valid start reading positions by lines.
- Merge all reserved data across the parts to splice the truncated lines between blocks after all parts have been read out.

Gene Chrom Pos Ref Alt Type AFR AMR ASJ EAS FIN NFE SAS 🖉 DDX11L1 1 13053 G C NonSyn 1.1473152822395595E-4 0.0 0.0 0.0 0.0 0.0 0.0 DDX11L1 1 13224 G A NonSyn 0.0 0.0 0.0 0.0 0.0 7.39535571660 DDX11L1 1 13402 G C NonSyn 0.0 0.0 0.0 0.0 0.0 7.267441860465116E-5 0.0 + DDX11L1 1 13452 G C NonSyn 0.0 0.0 0.0 0.0 0.0 7.24427702115329E-5 0.0 🖉 WASH7P 1 15004 C T NonSyn 0.0 0.0 0.0 6.203473945409429E-4 0.0 0.0 0.0 🖉 WASH7P 1 16856 A G NonSyn 0.028220361868755064 0.00527704485488126 WASH7P 1 17365 C G NonSyn 0.0017123287671232876 0.0073964 0.022935 WASH7P 1 17496 AC A NonSyn 0.0031854648419065595 0.0 0.0 0.0 0.0 6.664 WASH7P 1 29320 C T NonSyn 2.475860361475613E-4 0.0 0.0 0.0 0.0 0.0 0. OR4G4P 1 54829 G T NonSyn 0.0 0.0 0.0 0.0 0.0 1.942124684404739E-4 0.0 < OR4F5 1 69134 A G NonSyn 0.0 0.0 0.0 0.0 0.0 5.681818181818182E-4 0.0 🐖 OR4F5 1 69149 T A NonSyn 0.0 0.0 0.0 0.0 0.0 0.00129366106080207 0.0 OR4F5 1 69270 A G Syn 0.3936416184971098 0.0 0.0 0.997093023255814 0.94 OR4F5 1 69337 A C NonSyn 3.1645569620253165E-4 0.0 0.0 0.0 0.0 0.0 0.0 -OR4F5 1 69404 T C NonSyn 2.257336343115124E-4 0.0 0.0 0.0 0.0 0.0 0.0 4 OR4F5 1 69428 T G NonSyn 0.0016339869281045752 0.0 0.0 0.0 0.008680555 OR4F5 1 69438 T C Syn 0.0 0.0 0.0 0.0 0.0 9.73393900064893E-4 0.0 🗸 OR4F5 1 69462 C G NonSyn 3.594536304816679E-4 0.0 0.0 0.0 0.0 0.0 0.0 🖉 OR4F5 1 69487 G A NonSyn 0.0 0.0 0.0 0.0 0.0 1.5142337976983646E-4 0.0 + OR4F5 1 69511 A G NonSyn 0.5886524822695035 0.9410377358490566 0.967 OR4F5 1 69513 A G Syn 0.0 0.0 0.0 6.87757909215956E-4 0.0 0.0 0.0 🗸 OR4F5 1 69534 T C Syn 0.0 0.0 0.0 0.004005340453938585 0.0 0.0 0.0 ↔ 69555 T A NonSyn 1 6611295681063124F-4 0 0 0 0 0 0 0 0 0 0 0 0 0

Compare the speed to PLINK/SEQ and vcftools for parsing variants in VCF files

	Time	Maximal RAM used
kggseq (v1.0) 10 CPUs	35m	60MB*
kggseq (v1.0) 1 CPU	3h24m ~40x	36MB*
PLINK/SEQ (v0.10)^	24h25m	12MB
vcftools(v0.1.14)^	17h46m	6MB

Testing dataset: 1KG whole genome sequencing data

NGS studies could fail ...

Failed to find any candidate mutations

II. How can the data be analyzed more accurately?

Gene feature annotation-<u>A seemingly simple question!</u>

Footuro	Evaluation							
reature	Explanation							
Frameshift	Short insertion or deletion result in a completely different tr	hort insertion or deletion result in a completely different translation from the original.						
Nonframeshift	Short insertion or deletion result in loss of amino acids in the	e translated proteins.						
Startloss	Indels or nucleotide substitution result in the loss of start co	don(ATG) (mutated into a non-start codon).						
Stoploss	Indels or nucleotide substitution result in the loss of stop co	dons (TAG, TAA, TGA)						
Stopgain	Indels or nucleotide substitution result in the new stop code	ns (TAG, TAA, TGA), which may truncate the protein.						
Missense	Variants result in a codon coding for a different amino acid (missense)						
Splicing	variant is within 2-bp of a splicing junction (usesplicing x to	o change this, the unit of x is base-pair)						
Synonymous	Nucleotide substitution does not change amino acid.							
Exonic	Due to loss of sequences, only map a variant into exonic reg	on a first state of the second						
UTR5	variant within a 5' untranslated region							
UTR3	variant within a 3' untranslated region	various gene models:						
Intronic	Variants within an intron	RefSeg genes: NCRI Reference Seguence						
Upstream	variant overlaps 1-kb region upstream of transcription start site? (Neised genes. Nebi Neierence sequence						
Downstream	variant overlaps 1-kb region downtream of transcription end	Database, 92,006 transcripts.						
ncRNA	variant overlaps a transcript without coding annotation in the gene	Ensembl genes: 196,501 transcripts						
Intergenic	variant is in intergenic region	LICSC Known gange: 92 060 transcripts						
Linknown	Variants failed to man	UCSC KIIOWII genes. 62,900 transcripts.						

Unknown

Variants failed to map

GEnocde: 196,520 transcripts

A sequence gap-filled gene feature annotation algorithm

RefS	eq cDNA	NM_00114634	44 00000106	tggagettgeggggeggageetgetgagggaeeaageettggeegtetee	00000155
			<<<<<<		<<<<<<
Refere	nce gen	ome hg19:ch	r1 12888614	tggagcttgcggg.cggagcctgctgagggaccaagccttggccgtctcc	12888566
Chromoso	StartPositi	ReferenceAlterna	00000156	accctggaggagctgcccacggaacttttccccccactgttcatggaggc	00000205
me	onHg19	tiveAllele	<<<<<<		<<<<<<
1	69428	T/G	12888565	accetggaggagetgcccacggaacttttccccccactgttcatggagge	12888516
1	69534	T/C			
1	865545	G/A	00000206	cttcaggaggaggaggaggaggaggaggaggaggaggaggagg	00000255
1	865664	C/T	<<<<<<		<<<<<<
1	871216	G/A	12888515	ctt coacoacoactat ao accet ao actaot ant acoaccet ac	12888466
1	874762	C/T	12000515		12000400
1	874809	G/C	00000256		00000205
1	876592	C/T	00000256	celleegeegeeleegaggeeleigalaagalgeeligteiggag	00000305
1	878226	C/T	<<<<<<<		<<<<<<<
1	878254	C/T	12888465	ccttccgccgcctccctctgaggcctctgataaagatgccttgtctggag	12888416
1	878667	G/T		correct 🚽	
1	879180	C/T	00000306	gccttccaagctgtgctcgatgggctggatgcactgcttacccaaggggt	00000355
1	879382	T/A	<<<<<<		<<<<<<
			12888415	gccttccaagctgtgctcgatgggcttgatgcactgcttacccaaggggt	12888366
				1000 100 0 1 1 10000000 Wrong	
			<u>Variant: <i>i</i></u>	<u>s1830486@chr1:12888389</u>	
			KGGSeq:	PRAMEF11:NM_001146344:c.261T>G:p.L87L:synonymous	
			VEP: NM_0	01146344.1:synonymous_variant	
			ANNOVAR:	exonic_unknown	
			SNPEff: NM	001146344::c.261T>G:p.L87W:missense	

dbSNP: cds-synon: NM_001146344.2: 87 L⇒L

Number of exonic variants uniquely annotated by KGGSeq using gap-filled gene-feature annotation algorithm

	Unique without considering gap (dbSNP# ^a , % ^b)	overlapped	Unique with considering gap (dbSNP# ^a , % ^b)
startloss	0	492	0
Stoploss	0	223	2(1,100%)
Stopgain	87(66, 1.52%)	3905	30(22, 86.36%)
Splicing	0	2287	0
Missense	829(651, 2%)	225145	549(443, 95%)
Synonymous	493(396, 0.25%)	166857	858(672, 93.75%)
Total	1409	398910	1439

Compare non-synonymous gene feature annotation of three popular tools

	RefGene											
	KGGSeq vs. AN	NOVAR(20	15Jun17)		KGGSeq vs. SN	KGGSeq vs. SNPEff(v4_1k)				KGGSeq vs. VEP(v81)		
	KGGSeq Unique (dbSNP#ª, % ^b)	overlapp ed	ANNOVAR Unique (dbSNP#ª, % ^b)		KGGSeq Unique (dbSNP# ^a , % ^b)	overlapp ed	SNPEff Unique (dbSNP# ^a , % ^b)		KGGSeq Unique (dbSNP# ^a , % ^b)	overlapp ed	VEP Unique (dbSNP# ^a , % ^b)	
startloss	c, d	_c	c, d	1	36	436	1	•	35	457	227	
stoploss	7(5, 80%)	218	2(2, 100%)	•	21(15, 100%)	204	81(72, 2.78%)	1	15(10, 90%)	210	141(126, 62.7%)	
stopgain	124(92, 71.74%)	3811	4(4, 50%)		171(139, 89.93%)	3764	128(118, 1.69%)	1	180(134, 83.58%)	3755	597(530, 83.58%)	
splicing	96(90, 92.22%)	2191	3(2, 100%)	I	2286(2093, 98.09%)	1	1902(1764, 0.4%)		105(84, 73.81%)	2182	43322(40572, 3.18%)	
missense	3965(87.08%)	222213	113(94, 55.32%)	i	6422(5868, 96.1%)	219272	1197(1027, 11.88%)		13021(10719, 94.88%)	212673	12978(11885, 94.26%)	
total 📩	4192	228433	122	<i>.</i>	8956	223677	3309	1	13356	219277	18275	
	GENCODE(v19)											
startloss°	c, d	_c	c, d		73	580	94		0	653	44	
stoploss	3(2, 100%)	337	7(5, 20%)		29(23, 52.17%)	311	129(115, 7.83%)		2(1, 100%)	338	40(25, 4%)	
stopgain	30(23, 56.52%)	4222	156(52, 25%)		178(152, 84.21%)	4074	556(415, 13.01%)		10(7, 100%)	4242	163(58, 31.03%)	
splicing	157(146, 73.29%)	2460	76(48, 31.25%)		2614(2360, 88.18%)	3	4283(3859, 0.34%)		18(14, 64.29%)	2599	49203(41541, 1.56%)	
missense	680(509, 75.64%)	231245	5163(2121, 51.67%)		6773(6091, 94.07%)	225152	10948(7239, 22.82%)		6873(6314, 94.04%)	225052	4679(1582, 40.39%)	
total	870	238264	5402		9667	230120	16010		6903	232884	54129	

Pathogenic prediction at protein coding mutations

Another seemingly simple question!

Pathogenic prediction at protein coding mutations

		ReferenceAlt ernativeAllel	l	Polyphen2_H	MutationTas MutationAs			
Chromosome	StartPosition	е	GeneSymbol	DIV_pred	VAR_pred	LRT_pred	ter_pred	essor_pred
8	133251794	A/C	KCNQ3	D;D	D;D	D	D	medium
1	68669602	G/C	RPE65	В	В	Ν		
17	7517842	A/G	TP53	P;P;P;P	P;P;D;P	Ν	D	medium
18	45817276	C/T	MYO5B	B;P	B;B	D	D	medium
10	127412194	C/T	C10orf137	D;D;D	D;D;P	D		
3	170968107	C/T	ACTRT3	D	D	N	D	high

Population	Individual	Number of rare nsSNVs used ^a	% of rare variants predicted to be pathogenic	% of rare nsSNVs truly pathogenic	Total load of pathogenic derived alleles (95% CI) ^b
Caucasian	NA12156	384	20.3	5.5	21 (5, 36)
	NA12878	426	24.4	12.0	51 (33, 68)
Japanese	NA18956	356	19.1	3.6	13 (0, 26)
Chinese	NA18555	424	21.2	6.9	29 (12, 46)
African	NA18517	660	17.1	0.4	3 (0, 28)
	NA18507	623	20.9	6.4	40 (14, 64)
	NA19129	629	17.5	1.0	6 (0, 31)
	NA19240	688	18.3	2.3	16 (0, 42)

^aThe nsSNVs with missing scores at SIFT and/or MutationTaster were not used in the estimation.

^bthe 95% confidence interval was derived empirically from randomly repeating 10-fold cross-validation 200 times.

doi:10.1371/journal.pgen.1003143.t002

Combined prediction

combined = $weight_1 * tool_1 + weight_2 * tool_2 + weight_3 * tool_3 + \cdots$

Logistic regression model

Benchmark dataset
 5,340 disease-causal alleles vs.
 4,752 rare non-disease-causal nsSNVs

$$Pr(D = 1 | X = (S_1, S_2, \dots S_n)) = ???$$

Distinguishing pathogenic nsSNVs from other rare nsSNVs

Pathogenic prediction by new tools

(A) ROC curves and the AUC for all variants.

(B) AUC for each ensemble method, stratified by neut

sensitivity

Karthik A Jagadeesh, Aaron M Wenger, Mark J Berger, Harendra Guturu, Peter D Stenson, David N Cooper, Jonathan A Bernstein & Gill Bejerano

Affiliations | Contributions | Corresponding author

Nature Genetics (2016) | doi:10.1038/ng.3703 Received 30 June 2016 | Accepted 26 September 2016 | Published online 24 October 2016

Evaluation with 1898 non-synonymous pathogenic variants and 2180 benign in ClinVar

KGGSeq: PLoS Genet. 2013;9(1):e1003143 M-CAP: Nat Genet. 2016 Dec;48(12):1581-1586. REVEL: Am J Hum Genet. 2016;99(4):877-885 doi: 10.1093/hmg/ddu733 Advance Access Publication Date: 30 December 2014 Original Article

ORIGINAL ARTICLE

Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies

Chengliang Dong^{1,2,†}, Peng Wei^{4,6,†}, Xueqiu Jian⁵, Richard Gibbs⁷, Eric Boerwinkle^{4,5,7}, Kai Wang^{1,2,3,*} and Xiaoming Liu^{4,5,*}

Abstract

Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database.

Pathogenic prediction at non-coding mutations <u>A difficult question!</u>

Context-dependent epigenomic weighting improves identification of regulatory variants and diseaseassociated genes

Bench-mark datasets

• eQTLs fine mapping data from eleven studies on seven tissues/cell lines, and thirteen GTEx tissues

Key features

• 36 chromatin features to evaluate variant regulatory potential = (hit, score, centrality) * (DNase, H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, H4K20me1) for matched <u>GTEx tissues/cell lines</u>

Models

Logit model and model selection

$$P(causal|X) = \frac{1}{1 + e^{-(\alpha + \beta X)}}$$

Li J*, Li M*, et al. *Genome Biol. 2017* Mar 16;18(1):52.

Context-dependent scoring of GWAS fine-mapped SNPs underlies phenotypic cell type specificity

Li J*, Li M*, et al. <u>Genome Biol. 2017</u> Mar 16;18(1):52.

Improve the statistical power for identifying genes associated with complex diseases

Li J*, Li M*, et al. <u>*Genome Biol. 2017*</u> Mar 16;18(1):52.

III. How can the high-throughput sequencing data be used for different types of genetic diseases?

Identifying cancer-driver genes by somatic mutations

Challenges

- The mutation rates vary across cancers and difficult to model somatic mutations;
- Existing methods are underpowered to
 identify d
 1000/Mb
 1000/M

A method for identifying cancer-driver genes by somatic mutations Hypothesis :

- Genomic aberrations in somatic cells are major drivers of cancers;
- Driver-mutations conferring growth advantages of cancer cells and thus having higher mutations in cancer patients.

A model of identifying rare mutations without using controls

Challenges:

- Existing methods are underpowered to detect rare causal mutations unless the sample is huge.
- Spurious associations due to population structure

Hypothesis :

• Mutations of causal genes are excessive in human

AVAILABILITY

http://grass.cgs.hku.hk/limx/kggseq

	KGG	Sea: A biological Kn	owledge	-based mining platforr	n for Ger	omic an		
大绪 明 神 遗	ROOL	Geneti	c studies	using Sequence data				
WIALTNING				0 1				
lome	KGGSeq Ap	plication						
ownload	Туре		File		Size	Version		
- i	MS Wi	ndows / Mac OS X / Linux	KGGSeq + Resource bundle (for hg19)		11GB	1.0+		
egister	MS Wi	ndows / Mac OS X / Linux	KGGSeq + Resource bundle (for hg38)		13GB	1.0+		
	MS Wi	ndows / Mac OS X / Linux	KGGSeq Only		31MB	1.0+		
hort Tutorials	User Manual		Only Online Version provided since 0.3		-	1.0+		
Aendelian Disease	Source codes		KGGseq Github		-	1.0+		
Cancer Somatic	Datacata							
Double Hit Gene	Datasets	Type	File		Version			
Complex Disease		Example data	examples.zip		1.0+			
	ExoVar training sets		ExoVar		June, 2012			
nline Manual								
imple Domo	Note: If you have any question about KGGSeq, please email: <u>limx54@gmail.com;</u> You are also welcomed to join our google group. This site is used for communication and discussion							
	Kggseg usage and functions.							

Methodological studies on KGGSeq(A biological Knowledge-based

mining platform for Genomic and Genetic studies using Sequence data)

Methods developed by my research team for downstream analysis

- A powerful statistical model detecting rare-causal mutations of complex diseases using case-only samples (On-going)
- ✓ A powerful statistical model detecting cancer-driver genes using somatic mutations (In submission)
- ✓ Advanced algorithms for accurate and fast analyses of whole genome sequencing data of human diseases
 [Li M et al. *Nucleic Acids Res*. 2017 May 19;45(9):e75]
- ✓ Tissue-specific functional prediction of non-coding variants[,Li J*, Li M*, et al. <u>Genome Biol. 2017</u> Mar 16;18(1):52.]
- ✓ A multi-layer bioinformatics framework to prioritize Mendelian disease causal mutations with exomesequencing data [Li M et al. <u>Nucleic Acids Res</u>. 2012; 40(7):e53]
- ✓ A method for accurate prediction of disease-causal mutations [Li M et al. <u>PLoS Genet</u>. 2013;9(1):e1003143]
- ✓ A inheritance-model based prediction model for disease causal genes [..., Li M. <u>Bioinformatics</u>.
 2016;32(20):3065-3071]

KGGSeq (One of mainstream platforms in the world for downstreamanalysis of highthroughput sequencing data)

Keep updating for 8+ years, downloaded for 3000⁺ times!

In Summary

- Effective to use the block-bit-based algorithm to reduce the computing space and time in NGS data analysis;
- The block-based compression algorithms to facilitate parallel computing;
- Subtly designed annotation and prioritization algorithms to remove noises;
- Advanced methods to models distributions of rare mutations for more powerful identification of disease associated genes

Acknowledgments

– KGGSeq team members:

Pak C Sham, Allen Hongsheng Gui, Suying Bao, Johnny Kwan, Li Jun, Li Yan, John...

- Clinical collaborators
- Active users of KGGSeq

100 Talents Project of Sun Yat-sen Univerity HK GRF: 776412, 777511 HK HMRF: 02132236, 01121436 HKU SRT on Genomics HKU Seed Funding: 201411159172; 201311159090; 201302159006

Application in real datasets

Unpublished!