Network Model-Based Pathway Activity Quantification towards Personalized Drug-Response Prediction

Sungwon Jung, Ph.D. Department of Genome Medicine and Science Gachon University School of Medicine

The 15th Korea-Japan-China Bioinformatics Symposium 2017 Jun 21, 2017

다 다 Sachon Institute of Genome Medicine and Science 嘉泉基因组医科研究院

Talk Outline

- Understanding biological contexts from pathway-centric perspectives
- Pathway activity quantification based on differential genetic associations
 - Evaluation of Differential DependencY (EDDY)
 - Knowledge-based EDDY (KEDDY)
- Extending pathway activity quantification to single sample cases
- Individualized pathway signaling quantification and its correlation with drug responses

Gene-Centric Approach of Identifying Differential Contexts

- Typical steps of gene-centric approaches (with an example of utilizing gene expression data)
 - I. Prepare/preprocess gene expression data
 - II. Testing each gene for differential expression between conditions
 - Necessary adjustments (ex. P-value correction for multiple testing)
 - III. Identifying genes with differential expressions
 - IV. Based on annotations, investigating enriched annotations within the identified list of genes

or pathways in 11q13

Limitations of Gene-Centric Approaches

• No clear interpretation of genetic regulations

- "Okay, we identified a list of genes, which may be related to biological functions XX, YY, ZZ ..."
- Motivation: Can we provide more information on "differential biological functions"?
 - More direct interpretation can be possible.

Pathway-Centric Approach of Identifying Differential Contexts

Identifying differential pathways

GSEA (Subramanian et al., PNAS 2005 / Mootha, Nature Genetics, 2003)

Based on (sort of) differential gene expressions

Limitation of Differential Expression Approaches

 Differential expression-based approaches assume similar expression levels within a context

- However, there can be biological contexts where genes do not show similar expressions within.
 - Potentially due to other hidden factors

Biological contexts without similar gene expression

Evaluation of Differential DependencY (EDDY)

. . .

Application of EDDY to Glioblastoma Subtypes

- TCGA GBM gene expression data
 - Four subtypes (Classical, Mesenchymal, Neural, and Proneural)
- Identifying subtype-specific pathways with differential genetic associations
 - Testing of one subtype vs. the others
 - 2,101 pathway gene sets were tested (from MSigDB)

	Method	Classical	Mesenchymal	Neural	Proneural	
Detects differentially expressed genes	EDDY GSEA GSCA	13 1 (0) 1,590 (11)	10 245 (1) 1,432 (7)	22 6 (0) 1,681 (21)	22 3 (0) 1,563 (17)	
Another method	The numbe	The number of common cases with EDDY is indicated in the parentheses.				
considering differential assoc	ciations					

Table 1. The number of statistically significant gene sets for each subtype.

Application of EDDY to Glioblastoma Subtypes

Application of EDDY to Glioblastoma Subtypes

• One example: ARF pathway from the Classical subtype

(A) A lot of interaction differences between Classical and non-Classical samples

(B) No clear differential expression of individual genes between Classical and non-Classical

- From the Classical subtype, there is focal 9p21.3 homozygous deletion targeting CDKN2A. (Verhaak et al., Cancer Cell 2010)
- RB pathway is almost exclusively affected through CDKN2A deletion.
- (A) CDKN2A lost many interactions in Classical, while the only activated relationship is with RB1.

Limitation of EDDY

Requiring large computational resources

- For higher sensitivity, evaluation for more gene association networks is necessary.
- For larger gene sets (pathways), evaluation of more gene association networks is necessary for comparable sensitivity.
- => Needs heavy computation
- Example)
 - Testing about 1,500 pathways for four classes with 202 samples: Took two weeks with about 1,000 HPC cores
- 'Oh, I need something more handy.'

Extension of KEDDY Idea to Single Samples

Extension of KEDDY Idea to Single Samples

Pathway x Sample matrix

Extension of KEDDY Idea to Single Samples: Application

TCGA melanoma RNA-seq data

Extension of KEDDY Idea to Single Samples: Application

Group I median survival: 12.6 years Group II median survival: 4.8 years

Hazard ratio of Group I respect to Group II: 0.328

Extension of KEDDY Idea to Single Samples: Application

- One example: DNA fragmentation pathway
 - One of the mechanisms used by immune cells to kill target cells

Average pathway activities of two groups

- GZMB: Expressed by cytotoxic T lymphocytes and natural killer cells. Activates caspase cascade.
- CASP3, CASP7: Caspases.
 Activation plays a central role in cell apoptosis.

Suggests restricted immune response in Group II, where the caspase cascade activation by GZMB has been silenced.

Individual Signaling-Based Correlation of Genomic Profiles and Drug Responses

- Genomic data of colorectal cancer
 - 26 samples including primary tumor and liver metastasis
 - With matched normal colon tissues
 - Whole exome-seq, RNA-seq
 - DNA somatic mutations and gene expressions were evaluated.
- High-throughput drug screening
 - Screening of 65 FDA-approved drugs for every tumor sample
 - Response: IC50

Collaboration with Prof. Yongbeom Cho at Samsung Medical Center in Korea

- The needs of pathway evaluation methods, with abilities of investigating individual genetic associations
- Wide range of applications for individualized pathway analysis
 - Novel disease subtype identification
 - Individualized drug response prediction

Acknowledgements

Jung lab

- Sora Kim, M.S.
- Hyojung Kim
- Joigmin Lee
- Opening for Post-Doc!

Samsung Medical Center

- Prof. Yongbeom Cho
- Hyekyung Hong, Ph.D.
- Yeosong Lee, Ph.D.

 Gachon Institute of Genome Medicine and Science

DGDD

