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Midoffspring height
(average height of offspring)

Phenotype (P = Genotype (G) + Environment (£

Var(P) = Var(G) + Var(£) + 2 Cov(G,E)

Heritability, Var(G)/Var(P), is often estimated from family data
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Genetic and environmental contributions to
(A) monogenic and (B) complex disorders

A HapMap harvest of insights into the genetics of common disease
J. Clin. Invest. 118:5 doi:10.1172/JCI34772



Low-frequency variants and
disease susceptibility
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Copyright 2008 Nature Publishing Group, McCarthy, M. I, et al., Genome-wide association studies for complex traits:
Consensus, uncertainty, and challenges, Nature Reviews Genetics 9, 356-369




Single Nucleotide Polymorphisms

« Imply common variations
(minor allele frequency >1%)

e ~18 million RefSNPs in
dbSNP (Build 130)

— 9.5 million validated
« Most dense genetic marker

« Useful in mapping diseases
— Directly
— Indirectly

Indirect
assaciation
‘a
+ Direct
¥ association

--------------

Haplotype

| ok
Typed marker locus Unobserved causal locus http://en.wikipedia.org/wiki/Single-nucleotide polymorphism




Breakdown of LD around a new SNP
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A HapMap harvest of insights into the genetics of common disease
JClin. Invest. 118:5 doi:10.1172/JCI34772



Cystic fibrosis mutation ....._____‘v

A disease-
causing
mutation will be
associated with
nearby
polymorphisms
in a population
of individuals
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ARTICLES
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Figure 7 | Genealogical relationships among haplotypes and r? valuesin a
region without obligate recombination events. The region of chromosome
2 (234,876,004-234,884,481 bp; NCBI build 34) within ENr131.2q37
contains 36 SNPs, with zero obligate recombination events in the CEU
samples. The left part of the plot shows the seven different haplotypes
observed over this region (alleles are indicated only at SNPs), with their
respective counts in the data. Underneath each of these haplotypes is a

NATURE|Vol 437|27 October 2005
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Multiplicity
in sample
binary representation of the same data, with coloured circles at SNP
positions where a haplotype has the less common allele at that site. Groups
of SNPs all captured by a single tag SNP (with r* = 0.8) using a pairwise
tagging algorithm™* have the same colour. Seven tag SNPs corresponding
to the seven different colours capture all the SNPs in this region. On the right
these SNPs are mapped to the genealogical tree relating the seven haplotypes
for the data in this region.



Box 1 | Rationale for association studies
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A tutorial on statistical methods for population association studies
NATURE REVIEWS GENETICS VOLUME 7 | OCTOBER 2006 | 781



What is GWAS?

Genome-wide Association Study

« An examination of genetic variation
across a given genome

 Designed to ic
with observab
— Such as blooc

— or why some
condition

entify genetic associations
e traits

pressure or weight,

people get a disease or

« Hypothesis-free approach
»Candidate gene approach




Overview of GWAS

Affymetrix GeneChip Array

Figure 1: GeneChip* Mapping Assay Qverview. . | . . Pﬂpl.llilﬂﬂl"l rasﬂ'urms -~
S G A F0 il FE Digeston. g L Ege trios or case-control samples
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Whole-genome genotyping
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Genome-wide association

.....

Fine mapping

Gene mining

Gene sequencing &
polymorphism identification

Identification of causative SNPs

Pathway analysis &
target identification

http://www.genengnews.com/gen—articles/human—genome—wide—association—studies/1970/



Assumptions in GWAS

Bi-allelic SNPs

COm mon a ﬂCeStO I'S (human effective population sizes are small)
Linkage disequilibrium and haplotypes
> e

Direct
association

| ]

1 1 Haplotype
Typed marker locus Unobserved causal locus

Common disease-common variant

— disease-predisposing might have been advantageous in the past

— selection pressure is weak on late-onset diseases and on variants that contribute only a
small risk



Linkage Disequilibrium &
Haplotypes
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International HapMap Project

Home | About the Project | Data | Publications | Tutorial

The International Haptap Project is a partnership of scientists and funding agencies from Canada, China, Japan, Migeria, the United Kingdom and the United States to develop
that will help researchers find genes associated with human disease and response to pharmaceuticals. See "About the International HapMap Preject” for more information.

Project Information - MNew |

About the Project

Haphdap Publications
Hapbdap Tutorial

Haphdap bailing List
Haphlap Project Paricipants
Haphtap Mirror Site in Japan

Haphlap Genome Browser { Phazse 1,2 &3 -
merged genotypes & frequencies )

Haphlap Genome Browser [ Phasze 3 -
genotypes, frequencies & LD

Haphap Genome Browser [ Phase 1 & 2 - full
dataszet )

GWWAs Karyogram

Hapbdart

Bulk Data Download

Diata Freezes for Publication

EMCODE Project

Guidelines Faor Data Use

Useful Links

T=C SMP Downloads
Haphtap Samples at Coriell Institute

2009-04-02: HapMap3 CEL files available

Raw signal intensity data from HaphMap3 genotypes on the Genome-Wide Human SMP Array 6.0 are now available fo
2003-02-02: HapMap3 Phased Haplotypes available

Phased haplotypes for consensus Haphlap3 release 2 data has been phased for autosomes are now available for bul
2009-02-06: HapMap Public Release 227 {merged 11+

Genotypes and frequency data for the three phases of the project (14l rel #24 and |l release #2), were combined in MC
(dbSMNP b12B) coordinates. Data is available for downloading and also available for browsing. Click here to read
notes,

2003-01-07: HapMap Phase 3 draft 2 release available for download

Genotypes and frequency data for phase 3 (NCEI build 36, dbSNP b126) of the Haphdap are available for bulk downl
will subsequently be merged with phase [+l data, and once merged, the complete dataset will be made available in the
browser and Haphdart utility. Here are some notes and SNP counts for this dataset.

2008-11-26: HapMap Public Release #26 {merged I1+11l}

Genotypes and frequency data for phases |+ (rel #24) and |l (draft #1) of the project is available in NCBI build 36 (db3F
coordinates. Data is now available for downloading and also available for browsing. Click here ta read this release |
This release iz na longer available for browsing, instead please use the latest merged data release 227 ]

2003-11-26: HapMap Public Release #24 on genome browsen
Data for phases |+l of the project is now available for browsing in NCEBI build 36 (dbSMNF b126) coordinates.

20058-10-12: HapMap Public Release #24 (phase ll) available for download
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Selecting ‘haplotype tag’ SNPs

SNP SNP SNP
v v v

Chromosome1 AACACGCCA.... TTCGGGGTC.... AGTCGACCG....
Chromosome?2 AACACGCCA.... TTCGAGGTC.... AGTCA ACCG..us
Chromosome3 AACATGCCA.... TTCGGGGTC.... AGTCA ACCG....
Chromosome4 AACACGCCA.... TTCGCGGTC.... AGTCCACCG....

a SNPs

b Haplotypes @ aEa
Haplotype1 CTCAAAGTACGGTTCAGGCA
Haplotype2 TTGATTGCGCAACAGTAATA
Haplotype3 CCCGIATCTIGTGATACTGGTG
Haplotype4d TCGATTCICIGCGGTT|ICIAGACA
¥ 3 ;
A T| c
¢ Tag SNPs -~ | -~
G c G

International HapMap Consortium (2003) Nature 426:759



Tag SNPs can define common haplotypes

1%
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Haplotype 1 CAGATCGCTGAATGAATCGCATCIGT [35%)]
Haplotype 2 CAGATCGCTGAATGGATCCCATCAGT [30%)]
Haplotype 3 CGGATTGCTGCATGGATCCCATCAGT [15%)]
Haplotype 4 CGGATTGCTGCATGAATCGCATCIGT [10%)]

Several other haplotypes [10%]

A HapMap harvest of insights into the genetics of common disease
J. Clin. Invest. 118:5 doi:10.1172/JCI34772



Samples

Matched case-control samples on age,
sex, demographics

Case: more severely affected individuals

Control: low risk of disease, rather than
population-based samples

Common population structure
— Population stratification



Statistical tests

« Case-control
— Allelic chisq test
— Cochran-Armitage trend test

— Logistic regression
(http://www.well.ox.ac.u k/rmott/LECTURES/LOGISTIC_REGRESSION/Logistic%20
Regression%ZOusing%ZOR.ppt)

* Quantitative traits
— Linear regression

 Covariate interations
— Age, sex etc



Case-control association test

Chi square & OR
mmmmm

Case 542 2062 2033 4637 292 4345 4637
Control 514 1905 1786 4205 0 381 3824 4205
Total 1056 3967 3819 8842 0 673 8169 8842
| Allele | a | A | Total nn
Case 3146 6128 9274 8982 9274

Control 2933 5477 8410 381 8029 8410
Total 6079 11605 17684 673 17011 17684

Odds (case) | 3146/6128=0.513 292/8982=0.0325

Odds (control) | 2933/5477=0.5355 381/8029=0.04745
Odds ratio | 0.513/0.5355=0.959 0.0325/0.04745=0.685

P (x2) 0.183 1.619¢-06




Cochran-Armitage Trend Test
mmmm mm-m

Cases 2062 2033 4637

Contorls Sy S5 S5 S 514 1905 1786 4205

Sum ny n; n, N 1056 3967 3819 8842
2 o _ o

T =Y t:(riS — :R),  Additive P = 0.1842

i=0

Pr(Case|Genotype i) = Pr(Case|Genotype j) = n;/N

e Dominant P = 0.1941

* a dominant over A
t=(1,1,0

* a recessive to A
t=(011)  Recessive P = 0.4386

* a and A additive
t=(01,2)



Covariate adjustment

» Case-control « Quantitative traits
— Logistic regression — Linear regression

N = genotype + sex + age + € height ~ genotype +
case ~ exp(n)/(1+exp(n)) SEX T age + &

case




height

160

150

Quantitative traits

rs6918981 genotype

« Genotypes coded
(additive mode)
— 0 major homozygotes
— 1 heterozygotes
— 2 minor homozygotes

* Linear regression
— Intercept = 153.54
— Slope = 0.6086
— P value = 2.05e-05
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Type 2 diabetes association results

1161 Finnish T2D cases + 1174 Finnish normal glucose tolerant controls

Chromosome

Logistic regression using additive model adjusted for age, gender, birth province




LDLR locus and LDL cholesterol
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Imputation

« Genotypes not measured with SNP chips
can be inferred by referencing HapMap
haplotypes

* Increases marker density; helps define
signal boundaries

» Facilitates merging datasets from
different platforms; critical for meta
analysis
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Li (2009) Ann Rev Genomics Hum Genet 10:387




Gongalo Abecasis
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Overview of imputation using IMPUTE?2

Fine-scale
recombination

map (-m file) \
|
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panel
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options}

Original + imputed genotypes
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This figure over-simplifies what IMPUTEZ2 does. The output
for each genotype is actually a probability distribution:

Genotype 0 n This captures the uncertainty in
Probability | 0.01 | 0.18 the prediction.

https.//mathgen.stats.ox.ac.uk/impute/impute_v2.html




GWAS #2 GWAS #3 GWAS #4 GWAS #6 GWAS #7
LOLIPOP SUVIMAX InCHIANTI FUSION SardiNIA
| [ 1

Meta-analysis 7
il GWAS e

v : & \ s e -
<D DO D
v J & d v

Replication Replication
Cohort #2: Cohart #5:

"

FINRISKST 5

GWA in ~19,840 individuals
Follow-up in ~20,623 individuals

Kathiresan (2009) Nat Gen 41:56



[ Genome.gov | & Catal,
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NHGRI GWAS Cataloc

As of 04/02/10, this table includes 533 publications and 2540 SNPs.

Date First Author/Datef
Added to Journal fStudy
Catalog
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March 19, 2010

| bancet oncol
Genetic variants and

| risk of lung cancerin
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genorme-wide

| assaciation study

04/02/10 Medland

March 18, z010
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| A Mariant in LINZSB Is
| Associated with 20040
Finoer-Length Ratio, a
| Putative Retrospective
Biomarker of Prenatal

estosterone Exposure

| 04/02/10 | Nakajima
March 18, 2010

| PLOS ONE

| Mew Sequence Yariants

|inHLA Class ITIT
Renion Associated with
Susceptibility to Knee

| Dstenarthritis Identified

| by Genome-wide
Association Study

03726410 Smith
March 15, 2010
| Circulation
MNovel Associations of
| Multiple Genstic Locl
| wiith Plasma Levels of
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| Eactor, The CHARGE
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Disease [.Trait

Lung cancer

Digit length ratio

Knee osteoarthritis

Plasma coagulation
factors

Initial
Sample Size

377 cases, 377 | 511 pases, 1,007

Replication Sample Region

Size

|13q31.3

matched controls | controls

2,889 European | 3,659 European

children and
adolescents

899 lapanese

cases, 3,396
Japanese
contrals

Up to 23,608

European
ancestry
individuals

dald3 Gernan

167 Japanese cases,

lBgl6.3
- children

| ep21.32
| 347 Japanese controls,

| 243 Spanish cases, 426

:Spanish controls, 570

| Greek cases, 645

Greek controls

| Up to 7,604 European  20q11.22

| ancestry individuals
6024.3
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LINZRB
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STXBEPS

Strongest Risk aAllele

rs2352028- | 0.26

re314277-4 | 015

rs10947262- | 0.42

P-value
SNP-Risk Frequency
allele in
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6x 1078
a
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i

rsBE71B6-G | 0.101 6 % 10757 (FYIDy

rs9390459- | 0.442
4

1% 10722 [yiyF)
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OR or beta-
coefficient and
[95% c1]
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Platform CNY
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Tumina |
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O Acute Iymphoblastic leukemia
@ Adiponectin levels

@ Age-related macular degeneration

O AIDS progression

@ Alcohol dependence

@ Alzheimer disease

O Amyotrophic lateral sclerosis
@ Arterial shifiness

@ Asthma

@ Atrial fitwillation

@ Attention deficit hyperactivity disarder

@ Autism
@ Basal cell cancer

O Bipolar disorder

@ Bilirubin

@ Biadder cancer
@ Blond or brown hair
© Biood pressure
@ Biue or green eyes

Published Genome-Wide Associations through 12/2009,

@ Chronic lymphocytic leukernia
© Clettlip/palate

@ Cognitive function

@ Colorectal cancer

© Coronary disease

@ Creutzfeldt-Jakob disease
@ Crohn’s disease

@ BMI, waist circumference @ Cutaneous nevi

O Bone density
@ Breast cancer

@ C-reactive protein

i,

@ Dematitis
@ Drug-induced fiver injury
@ Eosinophil count

@ Cadiac

@ Camitine levels

© Carolenoid

nercl leveis @ E

eIy

@ Esophageal cancer
ial tremar

© Celiac disease

© Exfoliation glaucoma

658 published GWA at p<5x10-8
@ @

@ F cell distribution

O Fibrinogen levals

@ Folate pathway vitamins
) Freckles and burning
O Galistones

@ Glioma

@ Glycemic traits

© Hair color

(@] Hair morphology

O Heart rate

@ Height

O Hepatitis

) Hirschsprung's disease
O HIV-1 contral

© HDL cholesterol

© Homocysteine levels

@)

@ Matrix metalloproteinase levels

@ Idiopathic pulmonary fibrosis © MCP-1

@ IgE levels

O Mean platelet volume

@ Inflammatory bowe! disease @ Melanoma

@ Intracranial aneurysm
@ Iris color

@ Iron status markers
@ Ischemic stroke

O Juvenile idiopathic arthritis
@ Kidney stones

© Leprosy

@ LDL cholesterol

@ Liver enzymes

@ LP (a) levels

@ Lung cancer

@ \aaria

IMale pattern baidness

O Menarche & menopause

@® Multiple sclerosis

(O Mysloproliferative neoplasms
O Marcolepsy

(O Nasopharyngea cancer

O Meuroblastoma

© Nicotine dependence

@ Nonsyncromic cie ip wio cief paiale
© Obesity

@ Open personality

@ Otosclerosis

@ Other metabolic traits

@ Ovarian cancer

NHGRI GWA Catalog
www.genome.gov/GWAStudies

@ Pancreatic cancer

@ Pan

@ Panic disorder

@ Parkinson's disease

O Periodontiis

@ Peripheral arterial disease
@ Phosphatidylcholine levels
@ Frimary biliary cirthosis
@ Prostate cancer

O Protein levels

O Psoriasis

[ ] Pulmanary funct. COPD
@ QTinterval

@ Quantitative traits

© Recombination rate

© Red vs.non-red hair

© Renal function

@ Response fo hepattis C ireat
© Restless legs syndrome
O Rheumatoid arthritis

@ Schizophrenia

@ Serum metabolites

@ Skin pigmentation

@ Soluble E-selectin

@ Soluble ICAM-1

@ Speech perception

O Sphingolipid levels

@ Statin-induced myopathy
@ Stioke

@ Systemic lupus erythematosus
O Testicular germ cell tumor

@ Thyroid cancer

@ Total chalesterol

@ Response to anlipsychotic therapy@ Triglycerides

O Type 1 diabetes

@ Type 2 diabetes

O Urate

@ Venous thromboembolism
@ Vitamin B12 levels

@ Warfarin dose

@ Weight

O White cell count

@ YKL-40 levels



Central Dogma

Conformational

Alt. splicing et

Nonsense mt

NLOT] (1]

Expression var.

SNPs
CNVs
Structural var.

Adapted from
34 Pevsner 2003



SNPs

CNVs Statistical association btw
Structural var. genotype & phenotype

35



GWAS may have low power due t

- . - \

 Multiple intermediate steps such as epigenetic &
transcriptional regulations

 Multiple DNA variants may contribute to the
same phenotype

 These factors usually form a complex network of
interactions

36



* not non—synonymous substitutions

 found in non—exonic regions
= |ikely to regulate gene expression

» Gene expression difference btw individuals may be
molecular and intermediate phenotypes
= jnducing changes in higher—order disease traits
(Schadt et al. PLoS Biol. 2008)

37



Hundreds of GWAS applications tells us

« Many common variants of highly significant
disease association have been found

« They confer relatively small increments in
risk (1.0~1.5 fold)

« They explain only a small portion of
heritability
— Human height is estimated to have 80%
heritability
— About 5% of phenotype variance is explained
based on >10% people

Manolio et al, Finding the missing heritability of complex diseases. Nature 2009



Excuses for the missing heritability

« Large numbers of variants of smaller
effect yet to be found

 Rarer variants (possibly with larger effect)

» Structural variants poorly captured by
existing arrays

* Low power to detect gene-gene
Interactions

 Inadequate accounting for shared
environment among relatives

Manolio et al, Finding the missing heritability of complex diseases. Nature 2009



NATURE GENETICS VOLUME 42 | NUMBER 7 | JULY 2010

Common SNPs explain a large proportion of the heritability
for human height

SNPs discovered by genome-wide association studies (GWASs)
account for only a small fraction of the genetic variation of
complex traits in human populations. Where is the remaining
heritability? We estimated the proportion of variance for
human height explained by 294,831 SNPs genotyped on

3,925 unrelated individuals using a linear model analysis, and
validated the estimation method with simulations based on

the observed genotype data. We show thay/45% of variance J
mxplained by considering all SNPs simultaneouslyjThus,

most of the heritability is not missing but has not previously
been detected because the individual effects are too small

to pass stringent significance tests. We provide evidence

that the remaining heritability is due to incomplete linkage
disequilibrium between causal variants and genotyped SNPs,
exacerbated by causal variants having lower minor allele
frequency than the SNPs explored to date.



LETTER

B32 | NATURE | VOL 467 | 14 OCTOBER 2010

doi:10.1038/nature 09410

Hundreds of variants clustered in genomic loci and
biological pathways affect human height

« Meta analysis of
46 data sets

« 133,653 European
Individuals

« Pathways found

— Growth, kinase,
development,
insulin, bone etc

Cumulative expected variance explained (%)

Figure 1 | Phenotypic variance explained by common variants,
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Problems of GWAS

Correcting p-values of a million of
hypotheses

A very stringent cutoff is used to yield
only a small number of significant SNPs

Many moderate associations below the
cutoff is lost

This is very ineffective and wasteful



Type 2 diabetes association results

1161 Finnish T2D cases + 1174 Finnish normal glucose tolerant controls

Chromosome

Logistic regression using additive model adjusted for age, gender, birth province




Highly significant signals are found,
but difficult to discuss biology

Nearby Minor GWAS
Trait RS ID Class Locus genes? allele MAF (n=28,842)
BMI rs17178527 Unknown 6924.1 LOC729076 A 0.25 1.2E08
rs9939609 Intron 16q12.2 FTO A 013 1.7E06
WHR 152074356 Intron 12q24.13 C120rf51 T 0.15 L1BE-07
rs17089410 Unknown 13g21.33 T 0.14 6.1E06
Height rs6918981 Unknown 6p21.31 HMGAI G 021 32808
rs17038182 Unknown 1pl2 C 042 43E08
rs10513137 Intron 3923 ZBTB38 A 0.26 56E08
rs13273123 Intron 8ql12.1 PLAGI G 0.07 11E-06
rs600130  Intron 9q22.32 FBF2 G 0.15 2.7E-06
rs2079795 Unknown 17q23.2 BCAS3, TBX2 A 0.33 29E-D06
rs3791675 Intron 2pl6.l  EFEMFI G 0.22 36E06
rs41464348 Intron 2p22.3 LTBPI T 035 7.4E06
SBP rs17249754 Unknown 12q21.33 ATPZ2BI A 037 9107
rs715987  Unknown 10p15.1 C 0.15 45E06
DBP rs17249754 Unknown  12q21.33 ATPZ2EBI A 037 12E06
Pulse rate rs12731740 Unknown 1q32.2 CD46, T 010 3707
LOC148696
rs12110693 Unknown 6g22.31 LOC644502 A 0.49 1.3E-06
rs11576175 Intron 1g21.2 CTSS A 0.24 B83ELD6
BD-RT 157776725 Intron 7q31.31 FAM3C C 0.13 1.0E-11
rs9525667 Unknown 13g14.11 T 043 3.1E06
BD-TT 157776725 Intron 7q31.31 FAM3C C 0.13 16E06
151721400 Unknown 7pld.l1  TXNDC3, T 017 14E07
SFRP4,
EPDR1
KARE results 1550677 NearGene-5 12q24.31 TMEM1328 T 0.17 5.0E-06
rs6974574 Unknown  7pld.l A 030 79E06

Cho et al, 2009



Gene-Set based approach

 Testing the association of biologically
pre-defined gene sets instead of testing
iIndividual SNPs

» Gene sets are derived from Gene
Ontology, KEGG pathways, molecular
signatures, etc

It aims to detect moderate but
coordinated associations within a gene
set (as well as strong signals)



Gene-Set based approach

 Rationale: Even if the members of a
gene set are only moderately associated,
such moderate signals taken together
can represent a significant pattern

» Such set-wise association signals may be
more reproducible among different
cohorts
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GSEA (Gene-set Enrichment Analysis)

Broad Inst

Enrichment plot: P53_DOWN_KANNAN

A Enrichment score —@
Molecular Profile Data o |
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Fig 1: Enarichment plot: PS3_DOWN_KANNAN
Frofilo of the Running ES Score & Positions of Gene.Sef Membors on the Rank Ovdarod List



/-statistic method

- In gene expression array

Control Sample
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} “population
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set”
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Gene-set Analysis of GWAS

Compute association p-
values for each SNP using
a GWAS software

Assign each SNP to the
nearest gene: within some
padding (eg 20k bp)

Gene score: Choose the
best p-values among the
assigned SNPs

Then, apply GSA on the

gene scores

p-va

SNP ass|

alue

Best SNP p-v

et enrichment p-value

Gene s

PLOS Gen. (2010) Segré et al.

Corrected gene p-value
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e E] H 1
P10+ 105 001} i 108 0.02]
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How to assess the significance of a gene-set

 If genotype data are
available,

— permute the phenotype
labels and

— do GWAS followed by
GSA for each permutation

— Count the permutations
that exceed the original
gene-set score

« The original GSEA
iImplemented this
approach

« Label permutation can

remove most biases due
to variable SNP density
and gene-set size

» Most often the genotype
data are not available
but only the SNP P-

values are available



Biases In Gene Scores

 Gene score is often
assigned by the best

12

-logP(gene)
8
I Y A N Y AN I |

SNP P-values -

 This can be biased if BT . .
the number of SNPs o ;Z?OSNP;ingenfooo o
per gene is variable
— The more one samples,  Various corrections have

the more extreme values

been suggested
are likely observed 99

— Analytical formula
— Empirical regression
— Simulation method



Gene score correction

« Sidak's multiple
testing correction

Uncorrected original

T
5 o
h; -
= 1 = (1- PN+ A
P _ 1 (1 M 0 500 1000 1500 2000 2500
# of SNPs per gene
= N SNPs for a gene 5. Sidak—corrected
= About ¥2 of them are 7
outside linkage S o©-
disequilibrium (LD) T oo
(I) 5CI}O 1 OIOO 1 5|00 20IOO 25IOD

# of SNPs per gene



Empirical regression-based correction
MAGENTA @ Broad Inst.

B
No correction, r =0.69 Regression correction, r =0.95
10 107
8t 8T
5 . e
S [ 6 L
Ql
)] ~
L’ 4| D 45
g 2
255 2f
0 0
-log (ngene) -log (F:C’Gene)
}L':i‘"”'ﬁ"w = el + Big +0Ug +yhg +neg +1lg +1g

« Gene score is regressed by factors such as SNP
density, recombination hotspots, LD block size etc

PLOS Gen. (P010) Segré et al.



Simulation-based gene-scores

A Versatile Gene-Based Test for Genome-wide Association
Studies

Jimmy Z. Liu'- d- B8 Ajlan F. Mcrae!, Dale R. Nyholt!, Sarah E. Medland?, Naomi R. Wray', Kevin M.
Eircvmz, AMFS Investigators 3Micholas K. Hayward ' Grant W h-mnr_gcmewi, Peter M. Visscher',
Nicholas G. Martin', Stuart Macgregor!: & .

Show more
DOz 10.1016/).ajhg . 2010.06.009

LInder an Elsevier user license

« VEGAS requires LD information of the population
(usually from HapMap)



How to assess gene-set score

Z-statistics
SNP1
SN'PZ kﬁ gene 1 \
. ene 2
. /g . I gene set 1
SNPk o /

' : Z(GS)—)((T/\F

X  mean of n gene scores
m,: mean of M gene scores
2 . sd of Mgene scores



Significance of gene-set scores

e Parametric P-value
P = pnorm(Zlower.tail=F)

density
oo 01 02 03 04

 Permutation P-value

— Random sample the same

number of genes per « Permutation approach

gene-set replaces the density

— Calculate Z-scores for distribution function with the
each permutation one empirically generated

— Count the number of through permutation of the
permutations exceeding real gene scores

the original Z-score



Statistics other than Z

« Two-sample Wilcoxon
(Mann-Whitney) test

wilcox.test( gs, a/l,

Density

' all

0.2 03 04 05 06 07

alternative='gr’ ) [/ \ '=—gs
— gs scores of gene-set member genes =711
— alf scores of all genes =1 - ——
« Kolmogorov-smirnov test GSEA_Results
. 1 I |
ks.test(gs, a/ alternative="le’) o NG V\qh/e/\? o= O'h
N i as + or a hit
» GSEA statistic gn.q‘ /(- N,) otherwise,
o I " } ] % o> stepping from left to right
o i _ =
BO)=max) & N, o5 NN, = \
— I gene score N = Zpes |7 | 00

Rank order



Counting leading edge fraction only
MAGENTA @ Broad Inst.

* Count the number of Leading edge fraction
genes from a gene—set (eg, top 5%)
within the top ranked -
ones (eg, top 5%) WA

« Compare this with the
permutations to assess

significance « MAGENTA suggests
— Detailed distribution of
low ranking genes is to use lower Cu.tOff
immaterial, focusing only for complex traits
the strong signals with many

— ! ' ? " |
How to cutoff ‘top’ ranks: COﬂtI‘IbUtlng genes



Weighting by leading edge fraction

I-GSEA4GWAS @ Chin. Acad. Sci.

Improved - Gene Set Enrichment Analysis for
Genome-Wide Association Study

i'Gs 9&4GWEIS V1.1
— e

« SNP permutation instead of phenotype permutation
« Otherwise, the same as GSEAAGWAS

« Weight gene-set scores by the leading edge fraction
— Proportion of genes mapped by top 5% SNPs
— Perhaps too sensitive(?)

Table 1. The number of gene set hits identified by gene set analyses

GO KEGG
Software Gene score®
Unimputed Imputed Unimputed Imputed
-GSEA4GWAS Best 283 1,070 12 78
GSA-SNP Best 61 27 14 9
Second best 94 18 20 19

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSA, gene set analysis; SNP, single nucleotide polymorphism.
“Either the best or second-best p-value of SNPs residing inside or within 20 kb of the gene boundary was assigned to each gene
as the score. Unlike i-GSEA4GWAS, which assigns the best p-value, GSA-SNP has an option to assign the second-best p-value.



Multiple testing correction of
gene-set analysis results

Once P-value is
calculated for each
gene-set,

— We want to report a list of
gene-sets that are
significantly associated

This is a typical multiple
testing problem as we
have tested gene-sets

on the order of

— hundreds (KEGG pathways)
— thousands (GO terms)

« Bonferroni correction
Q=PxN
N : # of gene-sets tested
— Perhaps too stringent

« Benjamini-Hochberg FDR
Q, = P, XN+ k
P, : sorted raw P-values
in ascending order

— Accept the largest « at the
desired significance level



We are NOT the first advocating this strategy

9 different methods are available

ALIGATOR

i-GSEA4GWAS
GenGen

GESBAP

GRASS

’——_\
< GSA-SNP

|
GSEA-SNP

PLINK set-test

SNP ratio test

@) GENOME-WIDE ASSOCIATION STUDIES

NATURE REVIEWS | GENETICS

VOLUME 11 | DECEMBER 2010 | 843

-

Analysing biological pathways in
genome-wide association studies

=

Kai Wang **, Mingyao Li% and Hakon Hakonarson*!

Abstract | Genome-wide association (GWA) studies have typically focused on the
analysis of single markers, which often lacks the power to uncover the relatively small
effect sizes conferred by most genetic variants. Recently, pathway-based approaches
have been developed, which use prior biological knowledge on gene function to
facilitate more powerful analysis of GWA study data sets. These approaches typically
examine whether a group of related genes in the same functional pathway are jointly
associated with a trait of interest. Here we review the development of pathway-based
approaches for GWA studies, discuss their practical use and caveats, and suggest that
pathway-based approaches may also be useful for future GWA studies with
sequencing data.



GSA-SNP software

A Java based software for gene set
analysis of SNP arrays

Provides three widely used gene set
analysis methods for SNPs: Z-statistic,
Restandardization, and GSEA

Based on p-values: Applicable to both
case-control and quantitative trait data

Quite fast and easy to use
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ABSTRACT

Genome-wide association (GWA)} study aims to
identify the genetic factors associated with the
traits of interest. However, the power of GWA
analysis has been seriously limited by the
enormous number of markers tested. Recently, the
gene set analysis (GSA) methods were introduced to
GWA studies to address the association of gene
sets that share common biological functions. GSA
considerably increased the power of association
analysis and successfully identified coordinated as-
sociation patterns of gene sets. There have been
several approaches in this direction with some limi-
tations. Here, we present a general approach for
GSA in GWA analysis and a stand-alone software
GSA-SNP that implements three widely used GSA
methods. GSA-SNP provides a fast computation
and an easy-to-use interface. The software and
test datasets are freely available at http://gsa
.muldas.org. We provide an exemplary analysis on
adult heights in a Korean population.

INTRODUCTION

Genome-wide association (GWA) study of a large popu-
lation offers potential genetic causes of complex disease or
the traits of interest (1.2). The typical approach assesses

beyond individual markers or genes. Moreover, many of
those prominent SNPs are not reproducible among inde-
pendent experiments. Another important problem is that
many moderate but meaningtul associations are lost below
the stringent cutoff. In recent vears, the gene set analysis
(GSA) methods were taken into account in GWA studies
which may address these problems.

GSA methods were originally developed for a transcrip-
tome analysis to assess the differential expression of
pre-defined gene sets that share common biological func-
tions. They exhibited stronger statistical power than the
individual gene analysis, and have revealed many novel
gene sets with ‘subtle but coordinated” expression
patterns (3-5). Given that the basic goal of GWA
studies is to prioritize the biological networks or processes
associated with the trait of interest, it may be reasonable
to consider the pre-defined gene sets or pathways as the
units of an association analysis. Indeed, by analyzing
SNPs on the gene set level, GSA was able to reveal
many coordinated association patterns that might be lost
by the individual marker analysis.

Several case—control studies employed GSA methods.
Wang er al. (6) devised a GSEA framework for SNP
arrays. They assigned the most highly associated SNP
(best SNP) to each gene to summarize the association of
multiple SNPs in each gene. Using the method, they suc-
cessfully identified the Parkinson's disease susceptibility
pathways. Wang er al. (7) applied the same methods
which implicated the molecular mechanism of autism
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Program is freely downloadable from our
web page

GSA-SNP

Download

Program

Fequirement: JRE (Java runtime environment) 1.6.0 or greater

« GSA-SNP program (stable version, about 120 MB)

o GSA-SMP program (development version)
e manual
¢ Supplementary material

Examples

s SHP
o 100 permutations (about 145 MB)
o without permutation
e gene
o 100 permutations
o without permutation
« haplotvpe
o without permutation
e all
o download all above examples (ahout 185 MB)

Contact

E-mail to: Dr. Douau Mam or Dr. Sanasoo Kim

Updated: 2010/02/06

» Just type 'GSA-
SNP" in google

* Program,
tested data set,
and

user's manual
are available




Korea Association Resource (KARE) project

« Affymetrix 5.0 genotypes on 10,004 individuals (ages 40~69)

« 352,228 SNPs passed QC
— 38,364 markers violated HWE (P < 10-9)
— 17,926 genotype call rates < 95%
— 92,050 MAF < 0.01
« 8,842 individuals passed QC
— 11 sample contamination
— 41 gender inconsistency
— 608 cryptic relatedness
— 101 serious concomitant illness

« Revisit by GSA-SNP



Moderate but consistent associations with height
were detected in some Gene Ontology sets
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Literature survey (height)
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ANION CATION SYMPORTER ACTIVITY

“A key biological function in height regulation” by Weedon et al. (2008) Genome
-wide association analysis identifies 20 loci that influence adult height. Nat Gene
t, 40, 575-583.

GRIAL, one of the members, was implicated near a loci associated with height in
Croatian population. Endogenous activation of metabotropic glutamate receptor
s is known to modulate GABAnergic transmission of gonadotropin-releasing hor
mone (GnRH) neurons. Moreover, treatment with a GnRH agonist in short adoles
cents increased adult height

Related to EXTRACELLULAR MATRIX

Gudbjartsson et al. (2008) Many sequence variants affecting diversity of adult hu
man height. Nat Genet, 40, 609-615.

The most abundant proteins in ECM
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