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Phenotype (P) = Genotype (G) + Environment (E)
Var(P) = Var(G) + Var(E) + 2 Cov(G,E)

Heritability, Var(G)/Var(P), is often estimated from family data



Genetic and environmental contributions to     
(A) monogenic and (B) complex disorders

A HapMap harvest of insights into the genetics of common disease
J. Clin. Invest. 118:5 doi:10.1172/JCI34772



Low-frequency variants and 
disease susceptibility

Copyright 2008 Nature Publishing Group, McCarthy, M. I., et al., Genome-wide association studies for complex traits: 
Consensus, uncertainty, and challenges, Nature Reviews Genetics 9, 356-369



Single Nucleotide Polymorphisms

• Imply common variations 
(minor allele frequency >1%)

• ~18 million RefSNPs in 
dbSNP (Build 130)
– 9.5 million validated

• Most dense genetic marker
• Useful in mapping diseases

– Directly
– Indirectly

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism



Breakdown of LD around a new SNP

A HapMap harvest of insights into the genetics of common disease
J. Clin. Invest. 118:5 doi:10.1172/JCI34772







A tutorial on statistical methods for population association studies 
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What is GWAS?
Genome-wide Association Study

• An examination of genetic variation 
across a given genome

• Designed to identify genetic associations 
with observable traits 
– Such as blood pressure or weight, 
– or why some people get a disease or 

condition

• Hypothesis-free approach
ØCandidate gene approach



Overview of GWAS

http://www.genengnews.com/gen-articles/human-genome-wide-association-studies/1970/



Assumptions in GWAS

• Bi-allelic SNPs
• Common ancestors (human effective population sizes are small)

• Linkage disequilibrium and haplotypes

• Common disease-common variant
– disease-predisposing might have been advantageous in the past
– selection pressure is weak on late-onset diseases and on variants that contribute only a 

small risk



Linkage Disequilibrium & 
Haplotypes









Tag SNPs can define common haplotypes

A HapMap harvest of insights into the genetics of common disease
J. Clin. Invest. 118:5 doi:10.1172/JCI34772



Samples

• Matched case-control samples on age, 
sex, demographics

• Case: more severely affected individuals
• Control: low risk of disease, rather than 

population-based samples
• Common population structure

– Population stratification



Statistical tests

• Case-control
– Allelic chisq test
– Cochran-Armitage trend test
– Logistic regression 

(http://www.well.ox.ac.uk/rmott/LECTURES/LOGISTIC_REGRESSION/Logistic%20

Regression%20using%20R.ppt)

• Quantitative traits
– Linear regression

• Covariate interations
– Age, sex etc



Case-control association test
Chi square & OR

Genotype aa aA AA Total

Case 542 2062 2033 4637

Control 514 1905 1786 4205

Total 1056 3967 3819 8842

Allele a A Total

Case 3146 6128 9274

Control 2933 5477 8410

Total 6079 11605 17684

Odds (case) 3146/6128=0.513

Odds (control) 2933/5477=0.5355

Odds ratio 0.513/0.5355=0.959

P (χ2) 0.183

aa aA AA Total

0 292 4345 4637

0 381 3824 4205

0 673 8169 8842

a A Total

292 8982 9274

381 8029 8410

673 17011 17684

292/8982=0.0325

381/8029=0.04745

0.0325/0.04745=0.685

1.619e-06



Cochran-Armitage Trend Test
Genotype aa aA AA Sum

Cases r0 r1 r2 R

Contorls s0 s1 s2 S

Sum n0 n1 n2 N

• Additive P = 0.1842

• Dominant P = 0.1941

• Recessive P = 0.4386

• a dominant over A
t = (1,1,0)

• a recessive to A
t = (0,1,1)

• a and A additive
t = (0,1,2)

aa aA AA Sum

542 2062 2033 4637

514 1905 1786 4205

1056 3967 3819 8842



Covariate adjustment

• Case-control
– Logistic regression

η = genotype + sex + age + ε
case ~ exp(η)/(1+exp(η))

• Quantitative traits
– Linear regression

height ~ genotype + 
sex + age + ε

h

case



Quantitative traits

• Genotypes coded 
(additive mode)
– 0 major homozygotes
– 1 heterozygotes
– 2 minor homozygotes

• Linear regression
– Intercept = 153.54
– Slope = 0.6086
– P value = 2.05e-05



Recessive alleles, protective or risk

rs7723780 rs885378

Major
Homo

Minor
Homo

Hetero Major
Homo

Minor
Homo

Hetero







Imputation

• Genotypes not measured with SNP chips 
can be inferred by referencing HapMap 
haplotypes

• Increases marker density; helps define 
signal boundaries

• Facilitates merging datasets from 
different platforms; critical for meta 
analysis







https://mathgen.stats.ox.ac.uk/impute/impute_v2.html



Meta analysis



NHGRI GWAS Catalog



NHGRI GWA Catalog
www.genome.gov/GWAStudies

Published Genome-Wide Associations through 12/2009, 
658 published GWA at p<5x10-8
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DNA RNA

Alt. splicing
Nonsense mt
Nonsym. mt
Expression var.

phenotype

SNPs
CNVs
Structural var.

Conformational
variation

protein

Adapted from
Pevsner 2003
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DNA RNA phenotype

SNPs
CNVs
Structural var.

protein

Statistical association btw 
genotype & phenotype
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• Multiple intermediate steps such as epigenetic & 
transcriptional regulations

• Multiple DNA variants may contribute to the 
same phenotype

• These factors usually form a complex network of 
interactions
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• not non-synonymous substitutions

• found in non-exonic regions
§ likely to regulate gene expression

Ø Gene expression difference btw individuals may be 
molecular and intermediate phenotypes
§ inducing changes in higher-order disease traits

(Schadt et al. PLoS Biol. 2008)



Hundreds of GWAS applications tells us

• Many common variants of highly significant 
disease association have been found

• They confer relatively small increments in 
risk (1.0~1.5 fold)

• They explain only a small portion of 
heritability
– Human height is estimated to have 80% 

heritability
– About 5% of phenotype variance is explained 

based on >104 people

Manolio et al., Finding the missing heritability of complex diseases. Nature 2009



Excuses for the missing heritability

• Large numbers of variants of smaller 
effect yet to be found

• Rarer variants (possibly with larger effect)
• Structural variants poorly captured by 

existing arrays
• Low power to detect gene-gene 

interactions
• Inadequate accounting for shared 

environment among relatives

Manolio et al., Finding the missing heritability of complex diseases. Nature 2009





• Meta analysis of 
46 data sets

• 133,653 European 
individuals

• Pathways found
– Growth, kinase, 

development, 
insulin, bone etc



Problems of GWAS

• Correcting p-values of a million of 
hypotheses

• A very stringent cutoff is used to yield 
only a small number of significant SNPs

• Many moderate associations below the 
cutoff is lost

• This is very ineffective and wasteful





Highly significant signals are found, 
but difficult to discuss biology

KARE results
Cho et al, 2009



Gene-Set based approach

• Testing the association of biologically 
pre-defined gene sets instead of testing 
individual SNPs  

• Gene sets are derived from Gene 
Ontology, KEGG pathways, molecular 
signatures, etc

• It aims to detect moderate but 
coordinated associations within a gene 
set (as well as strong signals)



Gene-Set based approach

• Rationale: Even if the members of a 
gene set are only moderately associated, 
such moderate signals taken together 
can represent a significant pattern

• Such set-wise association signals may be 
more reproducible among different 
cohorts



Science, 1999

Classification of two types 
of leukemia data using 
microarray



GSEA (Gene-set Enrichment Analysis)
Broad Inst.



Compute the 
Z-score of the 

t-values

Z-statistic method
- In gene expression array



Gene-set Analysis of GWAS

• Compute association p-
values for each SNP using 
a GWAS software

• Assign each SNP to the 
nearest gene: within some 
padding (eg 20k bp)

• Gene score: Choose the 
best p-values among the 
assigned SNPs

• Then, apply GSA on the 
gene scores

PLOS Gen. (2010) Segrè et al.



How to assess the significance of a gene-set

• If genotype data are 
available, 
– permute the phenotype 

labels and 
– do GWAS followed by 

GSA for each permutation
– Count the permutations 

that exceed the original 
gene-set score

• The original GSEA 
implemented this 
approach

• Label permutation can 
remove most biases due 
to variable SNP density 
and gene-set size

Ø Most often the genotype 
data are not available 
but only the SNP P-
values are available



Biases in Gene Scores

• Gene score is often 
assigned by the best 
SNP P-values

• This can be biased if 
the number of SNPs 
per gene is variable
– The more one samples, 

the more extreme values 
are likely observed

• Various corrections have 
been suggested
– Analytical formula
– Empirical regression
– Simulation method



Gene score correction

• Šidák’s multiple 
testing correction

P’ = 1 – (1-P)(N+1)/2

§ N SNPs for a gene
§ About ½ of them are 

outside linkage 
disequilibrium (LD)

Uncorrected original

Sidak-corrected 



Empirical regression-based correction
MAGENTA @ Broad Inst.

• Gene score is regressed by factors such as SNP 
density, recombination hotspots, LD block size etc

PLOS Gen. (2010) Segrè et al.



Simulation-based gene-scores

• VEGAS requires LD information of the population 
(usually from HapMap)



How to assess gene-set score
Z-statistics

M

M

SNP1
SNP2

SNPN

SNPk

gene 1

gene n

gene set 1

M
gene 2

n
mXGSZ

s
0)( -

=M
gene M

X : mean of n gene scores
m0 : mean of M gene scores
Σ : sd of M gene scores



Significance of gene-set scores

• Parametric P-value
P = pnorm(Z,lower.tail=F)

• Permutation P-value
– Random sample the same 

number of genes per 
gene-set

– Calculate Z-scores for 
each permutation

– Count the number of 
permutations exceeding 
the original Z-score

• Permutation approach 
replaces the density 
distribution function with the 
one empirically generated  
through permutation of the 
real gene scores

Z = 1



Statistics other than Z

• Two-sample Wilcoxon 
(Mann-Whitney) test
wilcox.test( gs, all, 
alternative=‘gr’ )
– gs: scores of gene-set member genes
– all: scores of all genes

• Kolmogorov-smirnov test
ks.test(gs, all, alternative=‘le’)

• GSEA statistic

– r: gene score
– NH: gene-set size   p = 1 (usually)

gs
all

When p = 0,
+1/NH for a hit
-1/(N-NH) otherwise,
stepping from left to right

Rank order



Counting leading edge fraction only
MAGENTA @ Broad Inst.

• Count the number of 
genes from a gene-set 
within the top ranked 
ones (eg, top 5%)

• Compare this with the 
permutations to assess 
significance
– Detailed distribution of 

low ranking genes is 
immaterial, focusing only 
the strong signals

– How to cutoff ‘top’ ranks?

• MAGENTA suggests 
to use lower cutoff 
for complex traits 
with many 
contributing genes

Rank order

Leading edge fraction
(eg, top 5%)



Weighting by leading edge fraction
i-GSEA4GWAS @ Chin. Acad. Sci.

• SNP permutation instead of phenotype permutation
• Otherwise, the same as GSEA4GWAS
• Weight gene-set scores by the leading edge fraction

– Proportion of genes mapped by top 5% SNPs
– Perhaps too sensitive(?)



Multiple testing correction of 
gene-set analysis results

• Once P-value is 
calculated for each 
gene-set,
– We want to report a list of 

gene-sets that are 
significantly associated

• This is a typical multiple 
testing problem as we 
have tested gene-sets 
on the order of

– hundreds (KEGG pathways)
– thousands (GO terms)

• Bonferroni correction
Q = P ×N

N : # of gene-sets tested
– Perhaps too stringent

• Benjamini-Hochberg FDR
Qk = Pk ×N ÷ k

Pk : sorted raw P-values    
in ascending order

– Accept the largest k at the 
desired significance level



We are NOT the first advocating this strategy

• 9 different methods are available



GSA-SNP software

• A Java based software for gene set 
analysis of SNP arrays

• Provides three widely used gene set 
analysis methods for SNPs: Z-statistic, 
Restandardization, and GSEA

• Based on p-values: Applicable to both 
case-control and quantitative trait data

• Quite fast and easy to use



Freely available from http://gsa.muldas.org



Program is freely downloadable from our 
web page

• Just type ‘GSA-
SNP’ in google

• Program, 
tested data set, 
and 
user’s manual
are available



Korea Association Resource (KARE) project

• Affymetrix 5.0 genotypes on 10,004 individuals (ages 40~69)
• 352,228 SNPs passed QC

– 38,364 markers violated HWE (P < 10-6)
– 17,926 genotype call rates < 95%
– 92,050 MAF < 0.01

• 8,842 individuals passed QC
– 11 sample contamination
– 41 gender inconsistency
– 608 cryptic relatedness
– 101 serious concomitant illness

• Revisit by GSA-SNP



ANION CATION SYMPORTER ACTIVITY

COLLAGEN

SKELETAL DEVELOPMENT

PHOSPHORIC ESTER HYDROLASE ACTIVITY

GOLGI STACK

EXTRACELLULAR MATRIX PART

TRANSMEMBRANE RECEPTOR PROTEIN PHOSPHATASE ACTIVITY

GLUTAMATE RECEPTOR ACTIVITY

METABOTROPIC GLUTAMATE  GABA B LIKE RECEPTOR ACTIVITY

EXTRACELLULAR MATRIX

PROTEINACEOUS EXTRACELLULAR MATRIX

All

PGWA

Moderate but consistent associations with height
were detected in some Gene Ontology sets



Literature survey (height)

PROTEINACEOUS EXTRACELLULAR 
MATRIX “A key biological function in height regulation” by Weedon et al. (2008) Genome

-wide association analysis identifies 20 loci that influence adult height. Nat Gene
t, 40, 575-583.EXTRACELLULAR MATRIX

METABOTROPIC GLUTAMATE  
GABA B LIKE RECEPTOR ACTIVITY

GRIA1, one of the members, was implicated near a loci associated with height in 
Croatian population.  Endogenous activation of metabotropic glutamate receptor
s is known to modulate GABAnergic transmission of gonadotropin-releasing hor
mone (GnRH) neurons. Moreover, treatment with a GnRH agonist in short adoles
cents increased adult height

GLUTAMATE RECEPTOR ACTIVITY

TRANSMEMBRANE RECEPTOR 
PROTEIN PHOSPHATASE ACTIVITY

EXTRACELLULAR MATRIX PART Related to EXTRACELLULAR MATRIX

GOLGI STACK

PHOSPHORIC ESTER HYDROLASE 
ACTIVITY

SKELETAL DEVELOPMENT
Gudbjartsson et al. (2008) Many sequence variants affecting diversity of adult hu
man height. Nat Genet, 40, 609-615.

COLLAGEN The most abundant proteins in ECM

ANION CATION SYMPORTER ACTIVITY



Acknowledgements

• Dougu Nam (UNIST)
– Jin Kim (SNU)
– Seon-Young Kim 

(KRIBB)

• Ji-sun Kwon (SSU)

• KARE Consortium

• KCDC NIH GRC for 
providing KARE 
data 

• KOBIC for a PC 
cluster and storage

• NRF for funding


