Analysis of microarray data

and interpretation of gene signature
Agenda

O How to pre-process and perform statistical analysis of microarray data
O How to interpret gene signature, once it is obtained

~— Importance of learning about microarray in RNA-Seq era
O With respect to dealing with expression values, many aspects of
microarray analysis can be applied to RNA-Seq analysis.
O Large volume of publicly available microarray data
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Two-channel array vs. One-channel array

Channel: The number of fluorescent dyes used in the experiment

Two-channel array
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cDNA chip: an outdated technology.

Just ignore it.

Affymetrix GeneChip, etc.



Preprocessing of Affymetrix array:
Robust Multi-Chip Average (RMA) Method

Scanned
chip image

o=

\/
Probe Probe set

U Agene is represented by a probe set , but
a probe set consists of several probes

U Need to pool the intensity values of all the
probes into a single representative value

\_ Of aprobe set -/

Image

processing A data calibration process to make
the intensity ranges of all the chips
in a given dataset comparable

v |

CEL fi Preprocessing = Probe set summarization + Normalization |Gene expression
ile >

RMA = Tukey’s median polish  + Quantile data table

normalization

An easy reading: http://www.plexdb.org/modules/documentation/RMAexplained.pdf 3



http://www.plexdb.org/modules/documentation/RMAexplained.pdf

Quantile normalization

» What it does: Makes the replicate arrays to have equal distribution.

» Rationale: It can be assumed that overall distribution of expression values does not
vary much across all samples under most types of studies.

» How it works: Values for each column are ranked, then the average per rank is taken

and is reattributed to each column according to the original rank.

Through quantile normalization, all chips in a dataset get the same distribution. That is,

Chipl | Chip2 Chipl Chip2
Probe A 10 14 Rankl | 4 (probe C) | 8 (probe C)
Probe B 12 12 Sort the data from each Rank2 | 8 (probe D) | 10 (probe D)
Probe C 4 8 chip Rank3 [ 10 (probe A) | 12 (probe B)
Probe D 8 10 Rank4 | 12 (probe B) | 14 (probe A)
For each rank, substitute
the data with their average
Chipl | Chip2 Chipl Chip2
Probe A 11 13 |« Rankl | 6 (probe C) | 6 (probe C)
Probe B 13 11 Re-sort to the original Rank2 | 9 (probe D) | 9 (probe D)
Probe C 6 6 probe order Rank3 | 11 (probe A) | 11 (probe B)
Probe D 9 9 Rank4 | 13 (probe B) | 13 (probe A)

* The highest intensity values in each chip become identical.
» The second highest intensity values in each chip become identical.

» The lowest intensity values in each chip become identical.




Normalize all the samples in a dataset together

Control samples Case samples
A A

4 A4 )

Repl|Rep2| ... |Repl|Rep?2
Probe 1 5 5.2 6.1 6.3 o
Probe2| 4.1 | 39 | ... | 41 | 40 | .. > All group normalization:
Probe 3| 6.5 6.3 4.5 4.3 Normalize all these
Probe N| 2.2 2.4 2.5 2.2

lOr split into two sets, and,

Repl| Rep2 | ... Repl| Rep2 | ... Separate group
Probe 1 5 5.2 Probel| 6.1 6.3 . . .
Probe 2| 4.1 3.9 Probe 2| 4.1 4.0 > normal.lzatlon'
Probe 3| 6.5 6.3 Probe 3| 4.5 4.3 Normalize the two sets of
samples separately?
Probe N| 2.2 2.4 Probe N| 2.5 2.2

O All group normalization: presumes that the sample groups are similar enough.

O Separate group normalization: presumes that the sample groups are very different.

O In most situations (e.g., tumor vs. normal // treated vs. untreated), all group
normalization is to be used.

O In some rare situations (e.g., brain vs. liver), do something else.



Gene-level collapsing of duplicate probe sets’ intensities

0 Some probe sets correspond to identical gene. For example, in Affymetrix U133A, there
are ~21,000 probe sets that have Entrez Gene annotation, but they are mapped to only
~13,000 Entrez Gene IDs. Thus ~8,000 probe sets are duplicates.

0 Many of the signature interpretation methods require the genes in a signature to be unique.
Probeset-level data table

Entrez Expression values
Probeset ID P Gene-level data table
Gene |Samplel|Sample2Sample3| .. .. -
Entrez Expression values
- Gene |Samplel|Sample2|Sample3| .. ..
207268 x_at 10152 5
209856 x_at 10152 Collapsing : 10152
211793 s _at |10152 Condensing -
—— | 757 | | | |
216113 at 10152 — | Aggregation =

201746_at |7157 /
211300_s_at | 7157

Collapsing methods: Miller (2011) BMC Bioinformatics PMID:21816037

0 Simple averaging (most popular): Mean or Median
0 Choosing a representative: Probe set with highest overall intensity, or largest variance

Also it is the most important to use the most recent probe set annotation



Unpaired t-test

Test whether, on average, gene expression levels are different between control group
and case group

Healthy individuals Cancer patients
X [ v, P |0 |
log expression level 7)( _ 1 log expression level
from ith control 72 X >y Yo ' from ith case
individual X3 |  Unpaired t-test y, P |individual
- Xy

Take the means first and then take their difference

)

General form: = ? where SEY_\? = standard error of the difference between means
X-Y
Student’s t: Welch's t:
(assuming equal variance between X and Y) | (not assuming equal variance)
2 2 2 2
S S S, +S
SE. . =,]2+-% SE. = X7y
X —Y n m where X —Y n+m
< _ (n—1)s; +(m-1) Si Pooled sample
0 Tm_2 variance
4
" S, +5, s? s,
— _ =| ——— —+
df =n+m-2 n-+m n’(n-1) m’(m-1)




Paired t-test

Test whether gene expression levels are different, for example, before and after
treatment for each and every individual.

Before After In paired t-test,
treatment treatment
'X > (1) Take difference first for each pair: di =X =Y,
'14 >y17 (2) Then take the mean of differences: d
X2 Paired t-test Y2 7 o
X3 y37 t-statistic is calculated as t = —— where SEB = —d

SE_ Jn

df = n-1

The other way around

In unpaired t-test, B _
* you first take means of the two groups ( x and Y),
* then take the difference between the means (x — )




Multiple testing correction

1. What we do
= Suppose we have 10K array and obtained
P-values through statistical testing

Gene P-value

Test result seems to
|gene 1 0.00004 ] | 5 ggest that these
lgene 2 0.0001 , 2000 genes are
differentially

lgene 2000 [0.04 |) ~ expressed
lgene 2001 [0.06 [T

J

P-value
cutoff = 0.05

|gene 10000 ]0.99

= However, we need to use smaller P-value
cutoff, or equivalently, adjust the raw P-
values by increasing them in order to avoid
many false positives

2. Why we do (an analogy)

= | arge-scale psychokinesis experiment with
10,000 people from the street

= Task: Flip a coin 10 times.

If head turns up more than nine
times, you are a psychic.

(since Pr(H>=9)=0.0107)

» Result: Astonishingly, 100 people accompllshed

the task! An earth-shattering discovery?

= Problem statement:
» Even though none of the 10,000 subjects have
any supernatural power, there could be 107
(0.0107x10,000) subjects who accomplish the task,
by chance alone.
* Probability that none of them accomplishes the
task is 2x1047 (=(1-0.0107)10.000)

= Solution: Use more stringency (psychic only if head
turns up all ten times), or multiple testing correction.

3. How we do

» False-discovery rate (FDR) correction: FDR of 0.05 means 5% of false positives are expected
among those identified as positives. Benjamini-Hochberg’s procedure is the norm in bioinformatics.
» Family-wise error rate (FWER) correction: FWER of 0.05 means 0.05 genes are expected to be
false positive. Bonferroni’'s procedure is well known but too strict for most bioinformatics tasks.

9




An apparent paradox of multiple testing correction

Microarray experiment
= Suppose raw P-value of 0.01 was obtained for TP53 gene from microarray.

» The TP53 gene was not called significant since multiple testing corrected P-value was
not small enough, even though raw P-value was small.

RT-PCR on a single gene

= Suppose that, upon measuring only TP53 with RT-PCR, raw P-value of 0.01 was obtained.
» This time, TP53 was called significant since raw P-value was small.

Apparent paradox

Why TP53 was penalized only in the large-scale experiment even though they showed the
same result in both small- and large-scale experiments?

Large-scale experiment is a screening experiment

= Here the scientist did not have any hypothesis.

» So the scientist should recognize the possibility of the presence of many false findings in
his result, which can occur by chance alone, and do the best to prevent these false leads
from getting into scientific community, through multiple testing correction.

Small-scale experiment is a confirmatory experiment

» Here the scientist had a clear hypothesis. So he already narrowed down many possibilities
before the experiment, and performed the experiment only on that possibility to confirm his
hypothesis.

» So the scientist is able to be confident on his finding (“TP53 is differentially expressed, just
as | expected!’)

10




R for microarray data analysis

EMA - A R package for Easy Microarray data |
analysis A combined R package of many individual R packages. Easy to use.

. * . . . 7 .
Nicolas Servant"**"" Eleonore Gravier'***', Pierre Gestraud"*? Cecile Laurent'>**”® Caroline Paccard'??,
Anne Biton"**°, Isabel Brito'?>?, Jonas Mandel'**, Bernard Asselain'?*, Emmanuel Barillot"?, Philippe Hupe’1'2'3‘3

Run R code at the command line

Hello world in R (1) Make a code named hello.R

emacs: hello.R
# hello.R prints a text string on the terminal

args <- commandArgs (trailingOnly=T)
inputString <- args|[1]
cat (“Hello”, inputString, “\n”)

(2) Run the code at UNIX command line as follows

UNIX console, UNIX prompt
UNIX prompt> R --slave < hello.R --args world
Hello world
UNIX prompt>

Avoid using R interactive mode. Make a code and run it at UNIX command line.

11



How to interpret microarray data and gene signature

What can we do once we obtain a gene list?

n O Try to publish a paper with a huge gene list table?
| : . -
Statistical test O Try to learn about all genes on the list by reading thousands of papers”

v O The paradox: The more facts we learn, the less we understand the
process we study [Lazebnik (2002) Cancer Cell; PMID:12242150]

O An indication of information overload — poses an interpretation
challenge

Approaches for interpretation of microarray data and gene list

¢~ Functional enrichment analysis (GO analysis)
U Removing redundancy from GO analysis result
: QO Identifying differentially expressed PPl subnetworks
O Signature comparison using signature databases
L Comparison between two signatures
\_U Deriving a consensus signature

v
= Most of them are not tied to a particular technology
Gene list = Can be applied to gene signatures from not only microarray,
(also called but also RNA-Seq, and other high-throughput technologies

gene signature) 19




U Also called gene set analysis and GO analysis

Functional enrichment analysis

O It is a way to see the forest (gene sets—GO terms, KEGG pathways) through
the trees (individual genes)

Long list of
genes

Functional enrichment analysis > =
QWhat are the prevalent biological themes in the gene list? =
LWhich gene sets are differentially regulated? Short list of
UA way to distill the gene list down to a more digestible level. prevalent
gene sets

O Two types of functional enrichment analysis (and other interpretation approaches as well)

Cutoff-based methods Cutoff-free method
Input Unordered list of selected genes Ordered list of all genes, along with
above a selection cutoff (e.g., p- their statistics (e.g., p-value, fold
value<0.05, fold change>2-fold) change)
Advantage | Simpler and intuitive Can detect subtle signals

13



Cutoff-based vs. Cutoff-free functional enrichment analysis

Cutoff-based method A(‘)"ngcehri‘ss Cutoff-free method
Gene set B Gene setA |Selected| sorted by |All genes| Gene setA Gene set B
genes | expression
| B R [ ]
= - B
Activation Ofem = | Activation o
gene set A " Yutoff = gene set A
gets detectedE = E gets detected
= = H
. = = _
Repression of - :
gene set B — - Repression of
= _-—
goes E Utoff = gene set B
undetected s el = gets detected
X E —
- B . -
Softwares

O Cutoff-based enrichment analysis: DAVID [Huang (2008) Nat Protoc; PMID:19131956]
O Cutoff-free enrichment analysis: GSEA [Subramanian (2007) Bioinformatics; PMID:17644558]
GeneTrail [Backes (2007) Nucleic Acid Res; PMID:17526521]

14




Cutoff-based enrichment analysis (Fisher’s exact test)

Enrichment of TCA cycle genes in the selected DEGs

Array of
20,000 genes

Selection of
200 DEGs

vl w! xH

Mo. ':03
30 TCA 19,970 other

cycle genes genes

Genome-wide, only 0.15%
are TCA cycle genes

5 TCA cycle genes
O
O o O
XY

1‘3 ooo —P

%%e*®
P
°e n‘: ' 3"‘
‘L’ g"o".
Q Q o0
195 other genes

In the DEGs, 1.67%
are TCA cycle genes

Summarize as
contingency table

DEG [Non-DEG| TOTAL

TCA 5 25 30

Other | 195| 19,775 19,970

TOTAL | 200| 19,800 | 20,000

l

Calculate the probability of
the observed event by
hypergeometric distribution

Calculate p-value by enumerating more extreme events

Observed
event

More extreme events

A

r

— 1.11 E-05

\

p-value =Pr(X =5)+Pr(X =6)+---+Pr(X =30)
R> sum(dhyper(5:30, 30, 19970, 200))

(30)(19970)
Pr(X =5)= > 1%

20000

(200 ]
R> dhyper(5, 30, 19970, 200)
> 1.06 E-06

15




Cutoff-free functional enrichment analysis (GSEA)

Step 1. Calculation of enrichment score of a gene set

Up-regulated gene set Un-regulated gene set Down-regulated gene set
9“ L 81&
ofF------- arge o) o
7 positive 7 S - >
c score c n
() ) E
E = )
e < =
2 2 < Large
c | E 2 negative
NN Ol \NY score
Position along the sorted list Position along the sorted list YPosition along the sorted list
BT T T IRETIT 11 (TT 1T |
Step 2: Calculation of p-value by permutation test
Reshuffled data Real data
—Score1 ) [Permutation distribution of ___ Observed

Hits along randomized list 1

— Score 2
Hits along randomized list 2

Hits along randomized list N

|| I — Score N/

random enrichment scores

enrichment score

=4

}A
(0]




GSEA can detect subtle but coordinate expression changes

‘@ pLos one

OPEN 8 ACCESS Freely available online

Gene Expression Pattern in Transmitochondrial
Cytoplasmic Hybrid Cells Harboring Type 2 Diabetes-
Associated Mitochondrial DNA Haplogroups

Seungwoo Hwang'®, Soo Heon Kwak??, Jong Bhak?, Hae Sun Kang?, You Ri Lee?, Bo Kyung Koo?, Kyong
Soo Park? Hong Kyu Lee®?, Young Min Cho?*

O Other than the mitochondrial SNPs, the two groups were identical
O Therefore, expression profile differences between the two groups were very subtle

Enrichment plot:

HSA00190_OXIDATIVE_PHOSPHORYLATION
OO000 | e
analysis by ¢

@ 0.20

Samples with diabetes-resistant
- - GSEA o | p=0.014
mitochondrial SNPs . _
Q Q OO | . (LMY L
amples with diabetes-susceptible KEGG pathway § L — -
mitochondrial SNPs analysis by ) i
DAVID E-;zn 2,500 5,000 7,500 10hn;:"a—llezg-s:;gmlv:l:n(nnﬂEIla;e'sl:;n 20,000

Rank in Ordered Dataset

Enrichment profile — Hits Ranking metric scores

p:O54 17




Removing redundancy from GO analysis result (GO-Module)

] list of Long list of significant GO terms Compact list of
Ong liSt 0T genes (due to hierarchical nature of GO)  significant GO terms

Remove redundant p|i
GO terms
(GO-Module)

— Functional enrichment >
analysis
(DAVID, GSEA, etc)

Vol. 27 no. 10 2011, pages 1444-1446

AP P LI CATI ON S N O TE doi:10.1093/bioinformatics/btr142

Databases and ontologies Advance Access publication March 17, 2011

GO-Module: functional synthesis and improved interpretation of

Gene Ontology patterns
Xinan Yang', Jianrong Li', Younghee Lee' and Yves A. Lussier'2*

18




Removing redundancy from GO analysis result (GO-Module)

1. Find Key Terms 2. Find True Positive Terms 3. Find False Positive Terms
0 More significant than O All child terms of the (_J All the rest
all other neighboring key terms

terms in the GO tree

4. Report only key terms 0 or both key terms and true positive terms 0 + O

19



Removing redundancy from GO analysis result (GO-Module)

An example run

27 genes that are 8 significant GO terms
iterentaly expressed | ——{" pavip J— |t esbonee - 406 %
under free fatty acid olE-
treatment defense response 5.00E-04

chemotaxis 6.01E-04

taxis 6.01E-04

regulation of cell proliferation 0.00115
regulation of cell death 0.00140
0.00177

[GO-MOduIe ] response to wounding

-

5 Key Terms <_7 + 3 False Positive Terms <<-_>

- -~
¢ response t0 ~ (’Defense\,
~ wounding ./ "Jesponse

inflammatory
response

PRSI
Jaxis,

regulation o
cell death €SPonsy

regulation o
\Ke” proliferatio w
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Identifying differentially expressed PPl subnetworks

Overall scheme

Gene signature Protein-protein interactome (PPI)

|dentify subnetworks that have
overall differential expression pattern
» Network markers
i = Active subnetworks
SiW | » High scoring modules
- ' = Dysregulated subnetworks
» Differentially expressed subnetworks

"
oooooo

Why identify differentially expressed subnetworks?

Q Current set of pre-defined pathways (e.g., GO, KEGG) is based Y Functional enrichment
on current biological knowledge, which is far from complete. analysis on pre-defined
Fpathways is not

O Only part of the pathway is usually altered during biological sufficiont

processes.

o

O Solution: To identify differentially expressed subnetworks de novo.
21



Interactome mapping of DEGs versus DE subnetworks

Interactome mapping of DEGs (cutoff-based)

Differentially expressed subnetworks (cutoff-free)

Expression
data

(=P

Selection of DEGs

<4—

List of DEGs

~ {11

Overlay DEGs onto
global PPI /

—>
Identify

connected
subnetworks

DECs

O Usually called list-to-network method
0 Many web server softwares exist

Expression
D data

Full list of
all genes
+ statistics

Identify subnetworks
with overall significant
differential expression

KE subnetworJ

[ Covered in this lecture

22



Primary databases of PPI

Coverage of human PPIs on major primary databases
[De Las Rivas (2010) PLoS Comput Biol; PMID:20589078]

IntAct 0 HPRD shows the largest
24836 ppi
g coverage.

13489 ppi

| 1 Nevertheless, there are
40551 ppi many PPlIs that are not

50.7 % covered by HPRD.

27297 ppi . .-
341 % Q In addition, overlap between

databases is low.

16858 pp! O The low overlap is intentional
19088 ppi | because these DBs form a

consortium (IMEx; International
Molecular Interaction Exchange).

O The IMEXx consortium

BIND \ 2402 ppi ) ] )
5626 ppi % 7787 ppi 24668 ppi coordinates their curation

7.03 % 30.8 % efforts to avoid unnecessary
redundancy.

Need a collective database of all these primary databases of PPI

— Called a meta-database (or consolidated database) ’3




Meta-databases of PPI

» MiMI (Michigan Molecular Interactions)

Michigan molecular interactions r2: from interacting
proteins to pathways

V. Glenn Tarcea, Terry Weymouth, Alex Ade, Aaron Bookvich, Jing Gao,
Vasudeva Mahavisno, Zach Wright, Adriane Chapman, Magesh Jayapandian,
Arzucan (")zgl'.'lr, Yuanyuan Tian, Jim Cavalcoli, Barbara Mirel, Jignesh Patel,
Dragomir Radev, Brian Athey, David States and H. V. Jagadish*

» 12D (Interologous Interaction Database)

Unequal evolutionary conservation of human protein interactions
in interologous networks
Kevin R Brown"" and Igor Jurisica™™*

» IRefWeb (Interaction Reference Web)

iIRefWeb: interactive analysis of
consolidated protein interaction data
and their supporting evidence

Brian Turner', Sabry Razick?3, Andrei L. Turinsky', James Vlasblom*, Edgard K. Crowdy®>,
Emerson Cho', Kyle Morrison', lan M. Donaldson®® and Shoshana J. Wodak'*7*

24



ldentifying differentially expressed subnetworks with GiGA

Graph-based iterative Group Analysis enhances microarray
interpretation
Rainer Breitling*12, Anna Amtmann! and Pawel Herzyk?3

Step 1: Assign the ranks to all the nodes in PPI

PPI Assign the ranks to all Gene signature
B the nodes in PPI Sorted list of all genes
@ Rank |Gene | p-value
G—D)r—H
@ 3 | E |0.0004
E—1O)——E 4 D [0.002
E—1—6 @ 5 | C [0.06
S 6 | H |01
7 G 0.5
8 A 0.8
Step 2: Find local minimum nodes
(8) Local minima:
O nodes that have a higher rank than their direct neighbors
=) 4 O serve as seed nodes for subnetwork extension

Q@ 2




ldentifying differentially expressed subnetworks with GiGA

Step 3: Subnetwork extension from rank 1 seed node

Extension round 1 Extension round 4

Subnet 1 (n=3) Rl Subnet 4 (n=8)
R2

Extension rules
@ Rule 1: Extend to the direct

neighbor with the highest rank

Rule 2: If the extended node
has a neighbor with even

higher rank, extend further to it




ldentifying differentially expressed subnetworks with GiGA

Step 4: Calculation of p-value of subnetwork by hypergeometric distribution

N (=8) # nodes in global net
N (=3) # nodes in subnet

r (=4) Largest node rank in subnet

A oo )
r
® 0000) @00 d
el B
@@@ R> N=8; n=3; r=4
[J R> dhyper(n, r, N-r, n)
N n — 0.071
Step 5: Choose the most significant subnetwork
Subnet 1 Subnet 2 |(8 Subnet 3
p=0.071 p=0.035
7 4 6

Step 6: Repeat the procedure from next seed node
27



Sighature comparison using signature databases

DB of gene expression data

/ EMBL-EBI \

ArrayEXpPress

DB of signatures

39

K Gene Expression Omnibus /

Data sets deposited (millions)

0
2000 2003 2006 2009

|
2012%
*as of 13 July

Differential
expression Gene signature
analysis | database
pipeline
Identify related Input your signature

signatures from DB

¥

Q Confirm the findings from your data
Q Identify common DEGs
0 Generate new hypothesis

MARQ: an online tool to mine GEO for experiments
with similar or opposite gene expression signatures

Miguel Vazquez', Ruben Nogales-Cadenas?, Javier Arroyo®, Pedro Botias?,
Raul Garcia®, Jose M. Carazo®, Francisco Tirado?, Alberto Pascual-Montano® and
Pedro Carmona-Saez®*

28




Sighature comparison using signature databases

Gene signature tables from papers

DB of signatures

Text extraction| | G€ene signature

Table II. Top 30 Up-regulated Genes Distinguishing MD from
WD
Predictor genes P value
Paran] Proteasome 26S subunit, ATPase, 5 2.774
p-er cytochrome ¢ oxidase subunit Vla polypeptide 1 1.992
] chaperonin containing TCP1, subunit 3 1.983
S prohibitin 1.803
—11.60E-§ human D9 splice variant B mRNA 1.753
Hlo0o02] proteasome subunit, B, type 4 1.733
0.0006] hydroxyacyl-coenzyme A dehydrogenase, type 11 1.697
peptidylprolyl isomerase A 1.662
HN1-20E- adenosine deaminase, RN A-specific 1.654
Mp < GCN5-like | 1.591
Rlo.oooob ImithhondriaI ribosomal protein .12 1.493
HJ}2.40E-05 100 1.425 0.974 163235
CGI-69 -15 15|

and curation database

Advantages of publication-derived signature DBs

O Directly import the end results from expert
original analysis of individual studies

O Can always obtain signatures from papers

O Can obtain signatures from complex
experimental design beyond simple two-class
comparison (e.g., survival analysis, tissue
specificity analysis)

GeneSigDB: a manually curated database and
resource for analysis of gene expression signatures

Aedin C. Culhane'?*, Markus S. Schroder', Razvan Sultana', Shaita C. Picard’,
Enzo N. Martinelli', Caroline Kelly', Benjamin Haibe-Kains'?, Misha Kapushesky?®,
Anne-Alyssa St Pierre', William Flahive', Kermshlise C. Picard', Daniel Gusenleitner’,
Gerald Papenhausen’, Niall O’Connor’, Mick Correll’ and John Quackenbush®%*

Liverome: a curated database of liver
cancer-related gene signatures with
self-contained context information 29

Langho Lee', Kai Wang? Gang Li, Zhi Xie?, Yuli Wang?, Jiangchun Xu?, Shaoxian Sun?, David Pocalyko?,
Jong Bhak®, Chulhong Kim?, Kee-Ho Lee”, Ye Jin Jang®, Young Il Yeom®, Hyang-Sock Yoo®', Seungwoo Hwang'™




Comparison of two signatures

Smoking-induced
gene signature

(Lung)

>

Compare two signatures
of different but related context

J

Discover common
underlying mechanism

CE—

Smoking-induced
gene signature
(Mouth)

Smoking-induced
gene signature
(Lung: lab A)

Compare two signatures
of identical context but from
different laboratories

Smoking-induced
gene signature
(Lung: lab B)

|

To select robust DEGs

OrderedList—a bioconductor package for detecting

similarity in ordered gene lists
Claudio Lottaz"*, Xinan Yang'?, Stefanie Scheid' and Rainer Spang’

30




Calculating similarity score between signatures and p-value

. . Cumulative no. of |Weightat rank | &, jative weighted no.
: ol :
Sorted list 1 Sorted list 2 [Rank i matches at rank i Wi = ]/e of matches at rank i
COL1A2 MMP14 1 0 1/exp(q) ox1/exp(a)’
MMP14 / A2M 2 1 1/exp(2q) 1 x1/exp(2a)
SPARC SPARC 3 2 1/exp(3a) 2 x1/exp(3a)
VIM /\ MST1 4 2 1/exp(4a) 2x1lexp(4a) [
A2M COL1A2 5 4 1/exp(5a) A X 1lexp(5a) |
MST1 VIM N V¥ Up-match sum 1/exp(Na) Sum X 1/exp(Na) J E ‘ 3
MT3 SOD1 N A Down-match sum 1/exp(Na) Sumx 1/exp(Na) )
RHOB RHOB 5 2 1/exp(50a) 2 X 1/exp(5a) ‘
RND3 P SERPINELl 4 1 1/exp(4aq) 1 x1/exp(4a) »
SERPINE1 GAPDH 3 0 1/exp(3a) 0 x1/exp(3a)
SoD1 MT3 2 0 1/exp(2a) 0x1l/exp(2a)
vin B Nl PLG 1 0 1/exp(q) ox1/exp(a)

N/

Obtain overall similarity score
between signatures 1 and 2

Calculate p-value of the

similarity score by permutation

|

List of major common genes that <__
contribute to the score the most

31



Deriving a consensus signhature from several signatures
Lung Mouth Nose Lung A || Lung B || Lung C

) N

A consensus signature A consensus signature

Robust smoking]nduced markers

Common smoking-induced markers
in lung tissue

across all types of epithelial tissues

RankAggreg, an R package for weighted rank aggregation
Vasyl Pihur, Susmita Datta and Somnath Datta*

Rank aggregation methods

Shili Lin*
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Book recommendations: Microarray

Chaj pmzn! g!!!! &I

Mathematical and Computational Biology Series

Statistics and Data Analysis
‘ for Microarrays
.+ \Using R and Bioconductor

Second Edition

Statistics and Data Analysis for
Microarrays using R and Bioconductor
(2011, 2nd Edition)

Chapman & Hall/CRC Mathematical Biology and Medicine Senes

DATA ANALYSIS '
TOOLS FOR
DNA
MICROARRAYS

Y SORIN DRAGHICI

.H CHAPMAN & HALL/CRC

Data Analysis Tools for DNA
Microarrays
(2003, 1st Edition)
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Book recommendations: R

Teach how to program in R (Useful for bioinformaticians)

_ R o pes or I Wt sics; v Crrblnies
) i

THE

Oy
Making Everything Easier!”

ART OF R
PROGRAMMING

O'REILLY* Paul Teetor A"‘_’ﬂe de Vries
Copyrighted Material Joris Meys Copyrighted Material

Peter Dalgaard

THE'R BOOK

SECOND EDITION

. And may others

MICHAEL J. CRAWLEY
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