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Analysis of microarray data 

and interpretation of gene signature

Seungwoo Hwang,  swhwang@kribb.re.kr

Korean Bioinformation Center (KOBIC)

Korea Research Institute of Bioscience and Biotechnology (KRIBB)

 How to pre-process and perform statistical analysis of microarray data

 How to interpret gene signature, once it is obtained

2013/06/17  The 11th CJK Bioinformatics Training Course

 With respect to dealing with expression values, many aspects of 

microarray analysis can be applied to RNA-Seq analysis.

 Large volume of publicly available microarray data

Importance of learning about microarray in RNA-Seq era

Agenda

mailto:swhwang@kribb.re.kr
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Control Case

Cyanine 3 

labeling
Cyanine 5 

labeling

Competitive hybridization

Scan at 635 nMScan at 532 nM

cDNA chip: an outdated technology. 

Just ignore it.

Control Case

Streptavidin-

Phycoerythrin 

labeling

Affymetrix GeneChip, etc.

Separate hybridization

Scan at 570 nM

Streptavidin-

Phycoerythrin 

labeling

Two-channel array vs. One-channel array

Two-channel array One-channel array

Channel: The number of fluorescent dyes used in the experiment
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Preprocessing of Affymetrix array:

Robust Multi-Chip Average (RMA) Method

Probe set

normalization

An easy reading: http://www.plexdb.org/modules/documentation/RMAexplained.pdf

Image 

processing

Scanned 

chip image

CEL file
Gene expression 

data table

Preprocessing = Probe set summarization + Normalization

RMA = Tukey’s median polish + Quantile

 A gene is represented by a probe set , but 

a probe set consists of several probes

 Need to pool the intensity values of all the 

probes into a single representative value 

of a probe set

Probe

A data calibration process to make 

the intensity ranges of all the chips 

in a given dataset comparable 

http://www.plexdb.org/modules/documentation/RMAexplained.pdf
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• What it does: Makes the replicate arrays to have equal distribution.

• Rationale: It can be assumed that overall distribution of expression values does not 

vary much across all samples under most types of studies.

• How it works: Values for each column are ranked, then the average per rank is taken 

and is reattributed to each column according to the original rank.

Chip1 Chip2

Probe A 10 14

Probe B 12 12

Probe C 4 8

Probe D 8 10

Chip1 Chip2

Rank1 4 (probe C) 8 (probe C)

Rank2 8 (probe D) 10 (probe D)

Rank3 10 (probe A) 12 (probe B)

Rank4 12 (probe B) 14 (probe A)

Sort the data from each 

chip

For each rank, substitute 

the data with their average

Chip1 Chip2

Rank1 6 (probe C) 6 (probe C)

Rank2 9 (probe D) 9 (probe D)

Rank3 11 (probe A) 11 (probe B)

Rank4 13 (probe B) 13 (probe A)

Chip1 Chip2

Probe A 11 13

Probe B 13 11

Probe C 6 6

Probe D 9 9

Re-sort to the original 

probe order

Through quantile normalization, all chips in a dataset get the same distribution. That is,

• The highest intensity values in each chip become identical.

• The second highest intensity values in each chip become identical.

• …

• The lowest intensity values in each chip become identical.

Quantile normalization
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Rep 1 Rep 2 … Rep 1 Rep 2 …

Probe 1 5 5.2 … 6.1 6.3 …

Probe 2 4.1 3.9 … 4.1 4.0 …

Probe 3 6.5 6.3 … 4.5 4.3 …

… … … … … … …

Probe N 2.2 2.4 … 2.5 2.2 …

Control samples Case samples

All group normalization:

Normalize all these 

samples together?

Rep 1 Rep 2 …

Probe 1 5 5.2 …

Probe 2 4.1 3.9 …

Probe 3 6.5 6.3 …

… … … …

Probe N 2.2 2.4 …

Rep 1 Rep 2 …

Probe 1 6.1 6.3 …

Probe 2 4.1 4.0 …

Probe 3 4.5 4.3 …

… … … …

Probe N 2.5 2.2 …

Or split into two sets, and, 

Separate group 

normalization:

Normalize the two sets of 

samples separately?

Normalize all the samples in a dataset together

 All group normalization: presumes that the sample groups are similar enough.

 Separate group normalization: presumes that the sample groups are very different.

 In most situations (e.g., tumor vs. normal // treated vs. untreated), all group 

normalization is to be used.

 In some rare situations (e.g., brain vs. liver), do something else.



Probeset ID
Entrez

Gene

Expression values

Sample1 Sample2 Sample3 . . . .

217757_at 2

207268_x_at 10152

209856_x_at 10152

211793_s_at 10152

216113_at 10152

201746_at 7157

211300_s_at 7157

. . . . . . . .

 Some probe sets correspond to identical gene. For example, in Affymetrix U133A, there 

are ~21,000 probe sets that have Entrez Gene annotation, but they are mapped to only 

~13,000 Entrez Gene IDs. Thus ~8,000 probe sets are duplicates.

 Many of the signature interpretation methods require the genes in a signature to be unique.

Entrez

Gene

Expression values

Sample1 Sample2 Sample3 . . . .

2

10152

7157

. . . .

 Simple averaging (most popular): Mean or Median

 Choosing a representative: Probe set with highest overall intensity, or largest variance

Collapsing methods: Miller (2011) BMC Bioinformatics PMID:21816037

Collapsing

Condensing

Aggregation
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Gene-level collapsing of duplicate probe sets’ intensities

Probeset-level data table

Gene-level data table

Also it is the most important to use the most recent probe set annotation
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yi:
log expression level 

from ith case

individual

x2

x3

y1

y2

y3

x1

x y

General form:
 

X Y

x y
t

SE





Student’s t:

(assuming equal variance between X and Y)

2 2

p p

X Y

s s
SE

n m
 

2df n m  

Welch’s t:

(not assuming equal variance)

2 2

x y

X Y

s s
SE

n m






   

2
2 2 44

2 21 1

x y yx
s s ss

df
n m n n m m

   
    

     

Cancer patientsHealthy individuals

Unpaired t-test

Test whether, on average, gene expression levels are different between control group 

and case group

where  = standard error of the difference between means
X Y

SE


   2 2

2
1 1

2

x y

p

n s m s
s

n m

  


 

where

Pooled sample 

variance

xi:
log expression level 

from ith control

individual

Unpaired t-test

x4

Take the means first and then take their difference
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i i id x y (1) Take difference first for each pair:

D

d
t

SE
 where

d

D

s
SE

n


Before 

treatment

After 

treatment

Paired t-test

x1

x2

x3

y1

y2

y3

(2) Then take the mean of differences: d

t-statistic is calculated as 

Test whether gene expression levels are different, for example, before and after 

treatment for each and every individual.

df = n-1

In unpaired t-test,

• you first take means of the two groups (     and    ), 

• then take the difference between the means (           ) 
x

x y

y

Paired t-test

The other way around

In paired t-test,
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1. What we do
 Suppose we have 10K array and obtained 

P-values through statistical testing

Gene P-value

gene 1 0.00004

gene 2 0.0001

… …

gene 2000 0.04

gene 2001 0.06

… …

gene 10000 0.99

P-value 

cutoff = 0.05

Test result seems to 

suggest that these 

2000 genes are 

differentially 

expressed

 However, we need to use smaller P-value 

cutoff, or equivalently, adjust the raw P-

values by increasing them in order to avoid 

many false positives

2. Why we do (an analogy)

 Problem statement:

 Task: Flip a coin 10 times.

If head turns up more than nine 

times, you are a psychic.

(since Pr(H>=9)=0.0107)

3. How we do
 False-discovery rate (FDR) correction: FDR of 0.05 means 5% of false positives are expected 

among those identified as positives. Benjamini-Hochberg’s procedure is the norm in bioinformatics.

 Family-wise error rate (FWER) correction: FWER of 0.05 means 0.05 genes are expected to be 

false positive. Bonferroni’s procedure is well known but too strict for most bioinformatics tasks.

 Result: Astonishingly, 100 people accomplished 

the task! An earth-shattering discovery?

 Large-scale psychokinesis experiment with 

10,000 people from the street

• Even though none of the 10,000 subjects have 

any supernatural power, there could be 107 

(0.0107x10,000) subjects who accomplish the task, 

by chance alone.

• Probability that none of them accomplishes the 

task is 2x10-47 (=(1-0.0107)10,000)

 Solution: Use more stringency (psychic only if head 

turns up all ten times), or multiple testing correction.

Multiple testing correction
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Apparent paradox
Why TP53 was penalized only in the large-scale experiment even though they showed the 

same result in both small- and large-scale experiments?

Microarray experiment
 Suppose raw P-value of 0.01 was obtained for TP53 gene from microarray.

 The TP53 gene was not called significant since multiple testing corrected P-value was 

not small enough, even though raw P-value was small.

RT-PCR on a single gene
 Suppose that, upon measuring only TP53 with RT-PCR, raw P-value of 0.01 was obtained.

 This time, TP53 was called significant since raw P-value was small.

An apparent paradox of multiple testing correction

Large-scale experiment is a screening experiment
 Here the scientist did not have any hypothesis.

 So the scientist should recognize the possibility of the presence of many false findings in 

his result, which can occur by chance alone, and do the best to prevent these false leads 

from getting into scientific community, through multiple testing correction.

Small-scale experiment is a confirmatory experiment
 Here the scientist had a clear hypothesis. So he already narrowed down many possibilities 

before the experiment, and performed the experiment only on that possibility to confirm his 

hypothesis.

 So the scientist is able to be confident on his finding (“TP53 is differentially expressed, just 

as I expected!”)
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R for microarray data analysis

A combined R package of many individual R packages. Easy to use.

Hello world in R (1) Make a code named hello.R

(2) Run the code at UNIX command line as follows

UNIX console, UNIX prompt
UNIX prompt> R --slave < hello.R --args world
Hello world
UNIX prompt>

Avoid using R interactive mode. Make a code and run it at UNIX command line.

emacs: hello.R
# hello.R prints a text string on the terminal

args <- commandArgs(trailingOnly=T)

inputString <- args[1]

cat(“Hello”, inputString, “\n”)

Run R code at the command line



 Try to publish a paper with a huge gene list table?

 Try to learn about all genes on the list by reading thousands of papers?

 The paradox: The more facts we learn, the less we understand the 

process we study [Lazebnik (2002) Cancer Cell; PMID:12242150]

 An indication of information overload → poses an interpretation 

challenge

How to interpret microarray data and gene signature

Statistical test 

Gene list

(also called 

gene signature)

What can we do once we obtain a gene list?

Approaches for interpretation of microarray data and gene list
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 Most of them are not tied to a particular technology

 Can be applied to gene signatures from not only microarray, 

but also RNA-Seq, and other high-throughput technologies

 Functional enrichment analysis (GO analysis)

 Removing redundancy from GO analysis result

 Identifying differentially expressed PPI subnetworks

 Signature comparison using signature databases

 Comparison between two signatures

 Deriving a consensus signature



Functional enrichment analysis

Long list of 
genes

Functional enrichment analysis
What are the prevalent biological themes in the gene list?

Which gene sets are differentially regulated?

A way to distill the gene list down to a more digestible level.
Short list of 
prevalent 
gene sets

 Also called gene set analysis and GO analysis

 It is a way to see the forest (gene sets─GO terms, KEGG pathways) through 

the trees (individual genes)

 Two types of functional enrichment analysis (and other interpretation approaches as well)

Cutoff-based methods Cutoff-free method

Input Unordered list of selected genes 

above a selection cutoff (e.g., p-

value<0.05, fold change>2-fold)

Ordered list of all genes, along with 

their statistics (e.g., p-value, fold 

change)

Advantage Simpler and intuitive Can detect subtle signals

13
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Cutoff-based vs. Cutoff-free functional enrichment analysis

All genes 

on chip,

sorted by 

expression

Selected 

genes

Cutoff-based method Cutoff-free method

All genesGene set AGene set B Gene set A Gene set B

cutoff

cutoff

Repression of 
gene set B 
gets detected

Activation of 
gene set A 
gets detected

Activation of 
gene set A 

gets detected

Repression of 
gene set B 

goes 
undetected

O

OO

X

Softwares
 Cutoff-based enrichment analysis: DAVID [Huang (2008) Nat Protoc; PMID:19131956]

 Cutoff-free enrichment analysis: GSEA [Subramanian (2007) Bioinformatics; PMID:17644558]

GeneTrail [Backes (2007) Nucleic Acid Res; PMID:17526521]



Cutoff-based enrichment analysis (Fisher’s exact test)

Enrichment of TCA cycle genes in the selected DEGs

Array of 
20,000 genes

30 TCA 

cycle genes

19,970 other 

genes

DEG Non-DEG TOTAL

TCA 5 25 30

Other 195 19,775 19,970

TOTAL 200 19,800 20,000

Summarize as 
contingency table

5 TCA cycle genes

195 other genes

 

30 19970

5 195
Pr 5

20000

200

X

  
  
  

 
 
 
 

Calculate the probability of 
the observed event by 

hypergeometric distribution

R> dhyper(5, 30, 19970, 200)
→ 1.06 E-06

Calculate p-value by enumerating more extreme events

     -value Pr 5 Pr 6 Pr 30p X X X      

R> sum(dhyper(5:30, 30, 19970, 200))
→ 1.11 E-05

Selection of  

200 DEGs

Genome-wide, only 0.15%
are TCA cycle genes

In the DEGs, 1.67%
are TCA cycle genes

15

Observed 
event

More extreme events



Large 

negative 

score

Small 

score

Cutoff-free functional enrichment analysis (GSEA) 
E

n
ri

c
h

m
e

n
t 

s
c

o
re Large

positive 

score

Up-regulated gene set

Position along the sorted list

Un-regulated gene set Down-regulated gene set

E
n

ri
c
h

m
e
n

t 
s
c
o

re

E
n

ri
c

h
m

e
n

t 
s

c
o

re

Position along the sorted list Position along the sorted list

Step 1: Calculation of enrichment score of a gene set

Observed 
enrichment scoreHits along randomized list 1

Hits along randomized list 2

Hits along randomized list N p-value

Permutation distribution of 
random enrichment scores

Reshuffled data

. . .

Score 1

Score 2

Score N

Real data

Step 2: Calculation of p-value by permutation test

16



GSEA can detect subtle but coordinate expression changes 

Samples with diabetes-resistant 

mitochondrial SNPs

Samples with diabetes-susceptible 

mitochondrial SNPs

 Other than the mitochondrial SNPs, the two groups were identical

 Therefore, expression profile differences between the two groups were very subtle

17

KEGG pathway 

analysis by 

GSEA p=0.014

KEGG pathway 

analysis by 

DAVID

p=0.54



Removing redundancy from GO analysis result (GO-Module) 
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Long list of genes
Long list of significant GO terms

(due to hierarchical nature of GO)
Compact list of 

significant GO terms

Remove redundant 

GO terms

(GO-Module)

Functional enrichment 

analysis

(DAVID, GSEA, etc)



Removing redundancy from GO analysis result (GO-Module) 
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1. Find Key Terms 

More significant than 
all other neighboring 
terms in the GO tree

2. Find True Positive Terms 3. Find False Positive Terms

All child terms of the 
key terms

All the rest

4. Report only key terms       or both key terms and true positive terms       +



Removing redundancy from GO analysis result (GO-Module) 
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8 significant GO terms
immune response 4.38E-06

inflammatory response 3.51E-04

defense response 5.00E-04

chemotaxis 6.01E-04

taxis 6.01E-04

regulation of cell proliferation 0.00115

regulation of cell death 0.00140

response to wounding 0.00177

27 genes that are

differentially expressed 

under free fatty acid 

treatment

An example run

GO-Module

inflammatory 
response

response to 
wounding

Defense 
responsetaxis

chemotaxis

regulation of 
cell death

regulation of 
cell proliferation

immune 
response

DAVID

5 Key Terms        + 3 False Positive Terms



Identifying differentially expressed PPI subnetworks
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Gene signature Protein-protein interactome (PPI)

 Network markers

 Active subnetworks

 High scoring modules

 Dysregulated subnetworks

 Differentially expressed subnetworks

Identify subnetworks that have 

overall differential expression pattern

Overall scheme

Why identify differentially expressed subnetworks?

 Current set of pre-defined pathways (e.g., GO, KEGG) is based 
on current biological knowledge, which is far from complete.

 Only part of the pathway is usually altered during biological 
processes.

 Solution: To identify differentially expressed subnetworks de novo.

Functional enrichment 
analysis on pre-defined 
pathways is not 
sufficient



Interactome mapping of DEGs (cutoff-based)

Expression 

data

List of DEGs

Selection of DEGs

Subnetwork of 

DEGs

Differentially expressed subnetworks (cutoff-free)

Expression 

data

Full list of 

all genes

+ statistics

Identify 

connected 

subnetworks Identify subnetworks 

with overall significant 

differential expression
DE subnetwork

Overlay DEGs onto 

global PPI

 Usually called list-to-network method

 Many web server softwares exist

22

Interactome mapping of DEGs versus DE subnetworks

 Covered in this lecture



Coverage of human PPIs on major primary databases
[De Las Rivas (2010) PLoS Comput Biol; PMID:20589078]
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Primary databases of PPI

 HPRD shows the largest 

coverage.

 Nevertheless, there are 

many PPIs that are not 

covered by HPRD.

 In addition, overlap between 

databases is low.

 The low overlap is intentional 

because these DBs form a 

consortium (IMEx; International 

Molecular Interaction Exchange).

 The IMEx consortium 

coordinates their curation 

efforts to avoid unnecessary 

redundancy.

Need a collective database of all these primary databases of PPI

→ Called a meta-database (or consolidated database)



 MiMI (Michigan Molecular Interactions)

24

Meta-databases of PPI

 I2D (Interologous Interaction Database)

 iRefWeb (Interaction Reference Web)



Identifying differentially expressed subnetworks with GiGA

Step 1: Assign the ranks to all the nodes in PPI

Rank   Gene    p-value

1         B       0.000001
2         F       0.00003
3         E       0.0004
4         D       0.002
5         C       0.06
6         H       0.1
7         G       0.5
8         A       0.8

Sorted list of all genes

Gene signature

A B

G D H

F C E

PPI

8 1

7 4 6

2 5 3

Assign the ranks to all 

the nodes in PPI

Step 2: Find local minimum nodes

8 1

7 4 6

2 5 3

Local minima: 

 nodes that have a higher rank than their direct neighbors

 serve as seed nodes for subnetwork extension

25



Identifying differentially expressed subnetworks with GiGA
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8 1

7 4 6

2 5 3 Rule 1: Extend to the direct 

neighbor with the highest rank

Rule 2: If the extended node 

has a neighbor with even 

higher rank, extend further to it 

Step 3: Subnetwork extension from rank 1 seed node

8 1

7 4 6

2 5 3

8 1

7 4 6

2 5 3

Subnet 2 (n=5)
8 1

7 4 6

2 5 3

R1

R2

R1

R1 R2

R1

R1 R1

R1

R1

R2

Extension rules 

Subnet 1 (n=3)

Subnet 3 (n=6)

Subnet 4 (n=8)

Extension round 1 Extension round 4

Extension round 2 Extension round 3



Identifying differentially expressed subnetworks with GiGA
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Step 4: Calculation of p-value of subnetwork by hypergeometric distribution

N (=8)   # nodes in global net

n (=3)   # nodes in subnet

r (=4)    Largest node rank in subnet

8 1

7 4 6

2 5 3  
0

r N r

n
P X n

N

n

  
  
  

 
 
 
 

R> N=8; n=3; r=4
R> dhyper(n, r, N-r, n)
→ 0.071

r
n

0

1 2 3 4

5 6 7 8

1 2 4

N-r

N n

8 1

7 4 6

2 5 3

Subnet 2

p=0.018
8 1

7 4 6

2 5 3

Subnet 1

p=0.071
8 1

7 4 6

2 5 3

Subnet 3

p=0.035

8 1

7 4 6

2 5 3

Subnet 4

p=1

Step 5: Choose the most significant subnetwork

Step 6: Repeat the procedure from next seed node



Signature comparison using signature databases

DB of gene expression data DB of signatures

Gene signature 

database

Input your signatureIdentify related 

signatures from DB

 Confirm the findings from your data

 Identify common DEGs

 Generate new hypothesis

Differential 

expression 

analysis 

pipeline

28



Signature comparison using signature databases

Gene signature tables from papers DB of signatures

Gene signature 

database

Advantages of publication-derived signature DBs

 Directly import the end results from expert 

original analysis of individual studies

 Can always obtain signatures from papers

 Can obtain signatures from complex 

experimental design beyond simple two-class 

comparison (e.g., survival analysis, tissue 

specificity analysis)

Text extraction 

and curation

29



Comparison of two signatures

Compare two signatures 

of different but related context

Smoking-induced

gene signature

(Lung)

Smoking-induced

gene signature

(Mouth)

Discover common 

underlying mechanism

Compare two signatures 

of identical context but from 

different laboratories

Smoking-induced

gene signature

(Lung: lab A)

Smoking-induced

gene signature

(Lung: lab B)

To select robust DEGs

30



Sorted list 1

COL1A2

MMP14

SPARC

VIM

A2M

MST1

MT3

RHOB

RND3

SERPINE1

SOD1

VTN

1

2

3

4

5
…

N

N
…

5

4

3

2

1

Rank iSorted list 2

GAPDH

MMP14

A2M

SPARC

MST1

COL1A2

VIM

SOD1

RHOB

SERPINE1

MT3

PLG

…

… …

…

Cumulative no. of 

matches at rank i

0

1

2

2

4
…

Up-match sum

Down-match sum

…

2

1

0

0

0

Weight at rank i

1 i

iw e
1/exp(α)
1/exp(2α)
1/exp(3α)

1/exp(4α)

1/exp(5α)
…

1/exp(Nα)

1/exp(Nα)

…

1/exp(5α)

1/exp(4α)

1/exp(3α)

1/exp(2α)
1/exp(α)

Cumulative weighted no. 

of matches at rank i

0

1

2

2

4
…

Sum

Sum

…

2

1

0

0

0

1/exp(α)
1/exp(2α)
1/exp(3α)

1/exp(4α)

1/exp(5α)
…

1/exp(Nα)

1/exp(Nα)

…

1/exp(5α)

1/exp(4α)

1/exp(3α)

1/exp(2α)
1/exp(α)

x

x

x

x

x

x

x

x

x

x

x

x

Obtain overall similarity score 

between signatures 1 and 2

Calculating similarity score between signatures and p-value

Calculate p-value of the 

similarity score by permutation

List of major common genes that 

contribute to the score the most
31



Lung Mouth Nose Lung A Lung B Lung C

Common smoking-induced markers

across all types of epithelial tissues

Robust smoking-induced markers

in lung tissue

A consensus signature A consensus signature

Deriving a consensus signature from several signatures

32
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Book recommendations: Microarray

O
Statistics and Data Analysis for 

Microarrays using R and Bioconductor

(2011, 2nd Edition)

X
Data Analysis Tools for DNA 

Microarrays

(2003, 1st Edition)
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Book recommendations: R

. . . And may others

Teach how to program in R (Useful for bioinformaticians)

Teach how to do statistics in R (Not appropriate for bioinformaticians)


