

## Finding functional elements in genomes with statistical models

Chaochun Wei (韦朝春) Department of Bioinformatics and Biostatistics Shanghai Jiao Tong University

2013.6.17



### Contents

### Background

- Functional elements in genomes
- Statistical models
  - Hidden Markov Model (HMM)
  - Conditional Random Field (CRF)
- Finding functional elements in genomes
  - Gene structure prediction
  - Transcription factor binding site finding
  - Protein acetylation site prediction

Summary



### $DNA \rightarrow RNA \rightarrow Protein$





### **RNA** Processing





### Gene Structure



A gene is a highly structured region of DNA, it is a functional unit of inheritance.



### **Patterns in Splice Sites**





Josep F. Abril et al. Genome Res. 2005; 15: 111-119

Sequence data were from RefSeq of human, mouse, rat and chicken.



### A Typical Human Gene Structure





### Genes in a Genome





### Functional elements in genomes



### In a Mammalian Genome

Finding all the genes is hard
 Mammalian genomes are large
 8,000 km of 10pt type
 Only about 1% protein coding

 Finding all functional elements in genomes is still in its infant stage





### **Statistical Models**

- Hidden Markov Model (HMM)
- Conditional Random Field (CRF)



### Hidden Markov Model:

Model behind gene predictors

HMM for two biased coins flipping



 $e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$ 

$$\pi^* = \arg \max_{\pi} P(x,\pi)$$

### Hidden Markov Model

- Elements of an HMM (N, M, A, B, Init)
  - 1. N: number of states in the model
    - $S={S_1, S_2, ..., S_N}$ , and the state at time t is  $q_t$ .
  - 2. M: alphabet size (the number of observation symbols)
    - V={v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>M</sub>}
  - 3. A: state transition probability distribution
    - A={ $a_{ij}$ } where  $a_{ij}$ =P[ $q_{t+1}$ =S<sub>j</sub>| $q_t$ =S<sub>i</sub>], 1≤i,j ≤N
  - 4. E: emission probability
    - $E=\{e_j(k)\}\$  (observation symbols probability distribution in state j), where  $e_j(k)=P[v_k \text{ at } t \mid q_t = S_j\}$ ,  $1 \le j \le N$ ,  $1 \le k \le M$
  - 5. Init: initial state probability,  $\pi_i$ 
    - Init={ $\pi_i$ }, where  $\pi_i$ =P[q<sub>1</sub>=S<sub>i</sub>], 1 ≤ i ≤N.

### HMM is a generative model

HMM for two biased coins flipping



$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

$$P(x, \pi \mid \lambda) = Init_{\pi_0} * e_{\pi_0}(x(0)) * \prod_{0 \le i \le T} (a_{\pi_i \pi_{i+1}} e_{\pi_{i+1}}(x(i)))$$

### Hidden Markov Model

### • HMM: $\lambda = \{A, B, Init\}$

### Three basic problems for HMMs

- Problem 1: From the observation  $O=O_1O_2...O_T$ , and a model  $\lambda = \{A, B, Init\}, how to compute P(O \mid \lambda)\}$ ?
- Problem 2: From the observation  $O=O_1O_2...O_T$ , and a model  $\lambda$ ={A, B, Init}, how to choose a state sequence  $\pi^*$ , so that

$$\pi^* = \arg\max_{\pi} P(O,\pi)$$



• **Problem 3:** how to estimate model parameters  $\lambda = \{A, B, Init\}$ to maximize  $P(O \mid \lambda)$ .

### Most Probable Path and Viterbi Algorithm



Let 
$$f_{j}(i) = \max_{\{\pi_{0},...,\pi_{i-1}\}} (\Pr(x_{0},...,x_{i-1},x_{i},\pi_{0},...,\pi_{i-1},\pi_{i}=j))$$
Initialization (j=1...N) 
$$f_{j}(0) = \pi_{j}e_{j}(x_{0})$$
Recursion (i=1...L)
$$f_{j}(i) = e_{j}(x_{i})\max_{k}(f_{k}(i-1)a_{kj});$$

$$ptr_{j}(i) = \arg\max_{k}(f_{k}(i-1)a_{kj}).$$
Time complexity  $O(N^{2}L)$  space complexity  $O(NL)$ 
Solution to problem 2

### Probability of All the Possible Paths and Forward Algorithm



### **Backward Algorithm**



Probability of all the probable paths

$$P(x) = \sum_{\pi} P(x,\pi) = \sum_{k} b_k(0)$$

Problem 3: Optimize the model parameters from the observation

- HMM:  $\lambda = \{A, B, Init\}$
- With annotations
  - Maximum likely-hood ratio
- Without annotations
  - Baum-Welch algorithm (EM algorithm)

### Baum-Welch method (EM method)

• HMM:  $\lambda = \{A, B, Init\}$ , Without annotations

Let 
$$\xi_t(i, j) = P(\pi_t = i, \pi_{t+1} = j \mid x, \lambda)$$
  
then  $\xi_t(i, j) = \frac{f_i(t)a_{ij}e_j(x_{t+1})b_j(t+1)}{\sum\limits_{i=j}^{N}\sum\limits_{j=1}^{N}(f_i(t)a_{ij}e_j(x_{t+1})b_j(t+1))}$   
Let  $\gamma_t(i) = \sum\limits_{j=1}^{N}\xi_t(i, j)$   
then  $\sum\limits_{t=0}^{L}\gamma_t(i)$  = expected number of transitions from S<sub>i</sub>  
 $\sum\limits_{t=0}^{L}\xi_t(i, j)$  = expected number of transition S<sub>i</sub> to S<sub>j</sub>

Baum-Welch method (EM method) (2) • HMM:  $\lambda = \{A, B, Init\}$ , Without annotations Then,  $Init_i =$  expected frequency in S<sub>i</sub> at time 0 =  $\gamma_0(i)$  $\overline{a_{i,j}} = \frac{\exp ected \quad number \quad of \quad tranistions \quad from \quad S_i \quad to \quad S_j}{\exp ected \quad number \quad of \quad tranistions \quad from \quad S_i}$  $= \frac{\sum_{t=0}^{I} \xi_t(i,j)}{I}$  $\sum_{t=0}^{\infty} \gamma_t(i)$  $\bar{e}_i(k) = \frac{\exp ected number of times in state j and observing symbol v_k}{v_k}$ exp ected number of times in state j  $\sum_{\substack{t=0\\s.t.x_t=v_k}}^{L} \gamma_t(i)$  $\sum_{t=0} \gamma_t(i)$ 

### Genes in a Genome





### Different information for gene prediction



### TWINSCAN\_EST Model

### Generalized HMM

- Each feature in a gene structure corresponds to one state.
- State-specific length models.
- State-specific sequence models
- Use Conservation information
- Use EST information



24

### **Conservation Sequence**

Generated by projecting local alignments to the target sequence

human CTAGAGATGCAAAAGAAACAGGTACCGCAGTGC---CCC

**mouse** CTAGAG-----AGACAGGTACCATAGGGCTCTCCT

# Pair each nucleotide of the target with "|" if it is aligned and identical ":" if it is aligned to mismatch "." if it is unaligned



### Sequence Representation of EST Alignments

- 1. Use EST-to-genome alignment programs
  - BLAT (Kent 2002)
- 2. Project the top alignment for each EST to the target genomic sequence





### Using ESTs for Gene Prediction: TWINSCAN\_EST



Integrating EST alignment information into TWINSCAN to improve its accuracy where EST evidence exits and not to compromise its ability to predict novel genes.



### Accuracy Measurement

- Annotated data sets for training/testing
  - RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
  - CCDS (http://www.ncbi.nlm.nih.gov/CCDS/)
- Accuracy in different levels
  - Nucleotide level
  - Exon level
  - Gene level
  - Transcript level
- Sensitivity and specificity



## Annotation Prediction Correct Prediction

 $Sensitivity = \frac{Correct\_\Pr ediction}{Total\_Annotation}$ 

Specificit 
$$y = \frac{Correct \_Prediction}{Total \_Prediction}$$





### TWINSCAN\_EST and N-SCAN\_EST on the Whole Human Genome





### An Example of N-SCAN\_EST Prediction



#### (Hg17, chr21:33,459,500-33,465,411)





### An Example of N-SCAN EST Prediction



### **Experimental Validation of Predictions**



Siepel, Genome Research, 2007



### **Experimental Validation of Predictions**

🔷 See

- The MGC Project Team, "The Completion of the Mammalian Gene Collection (MGC)", Genome Research, 2009, 19:2324-2333
- Wei, C., et al., "Closing in on the C.elegans ORFeome by Cloning TWINSCAN predictions", *Genome Research*, 2005, 15:577-582
- Tenney, A. E. et al., "Gene prediction and verification in a compact genome with numerous small introns", Genome Research, 2004, 14, 2330-2335



### Limits of HMM

### A strict statistical model

All features need to be independent



### **Conditional Random Fields**

 The conditional probability-like score of a label sequence (TFBS and non-TFBS) given an observation sequence x can be computed as follows

$$p(\mathbf{y} | \mathbf{x}; \boldsymbol{\lambda}) = \frac{\exp\left(\sum_{t=1}^{L} \sum_{k=1}^{K} \lambda_{k} f_{k}\left(y_{t}, y_{t-1}, t, \mathbf{x}\right)\right)}{\sum_{\mathbf{y}'} \exp\left(\sum_{t=1}^{L} \sum_{k=1}^{K} \lambda_{k} f_{k}\left(y'_{t}, y'_{t-1}, t, \mathbf{x}\right)\right)}$$

where y is *the* label sequence or annotation of all bins, x is the observed genomic sequence,  $f_k$  is the k<sup>-th</sup> feature functions and  $\lambda_k$  is the corresponding weight. The feature function can be an arbitrary function on x and y' is any label sequence.



### **Training and Prediction**

### Training

To estimate the parameter vector λ, we use a Regularized Maximum Conditional Log Likelihood method.

That is  

$$\lambda_{ML} = \arg \max_{\lambda} \left( \ln(p(y | x; \lambda)) \right)$$

$$\lambda_{ML} = \arg \max_{\lambda} \left( \sum_{t=1}^{L} \lambda_{k} f_{k} - \ln(Z(\mathbf{x})) - \frac{\|\lambda\|^{2}}{2\sigma^{2}} \right)$$

This can be done by numerical computing.

### Prediction

the marginal probability of *j*-th bin to be TFBS as follows

$$s_j = p(y_j = 1 | \mathbf{x}; \boldsymbol{\lambda})$$



### **TFBS** finding

- Transcript factor binding site finding is challenging , because
  - TFBSs are short, 6bps and up
    - High false positive prediction
  - No gold standard data until recent Chip-seq data.



### CTF: A novel integrated TFBS prediction system based on Conditional Random Fields







The system diagram of CTF



### Dataset

- The binding sites of 13 TFs in mouse ES cells from the ChIP-seq data from Chen et al, Cell, 2008.
- The 13 TFs:
  - c-Myc, CTCF, E2f1, ESrrb, Klf4, Nanog, n-Myc, Oct4, Smad1, Sox2, STAT3, Tcfcp2l1 and Zfx



### **Performance evaluation**

### Gold-standard TFBS dataset

- "Peak-centric" method
- Divide the genome into bins of 200bps
- Those bins with Chip-seq peaks are gold standard TFBSs

### Evaluation

- TFBSs with their centers overlapping with a bin with Chipseq peaks are TPs
- 10-fold cross validation
  - Divide 19 chromosomes into 10 folds
  - 1 for test and 9 for training



### **Accuracy Comparison**

|          | CTF  | Chromia | PWM  |
|----------|------|---------|------|
| c-Myc    | 0.98 | 0.94    | 0.84 |
| CTCF     | 0.76 | 0.69    | 0.76 |
| E2f1     | 0.96 | 0.94    | 0.75 |
| Esrrb    | 0.89 | 0.84    | 0.77 |
| Klf4     | 0.96 | 0.92    | 0.83 |
| Nanog    | 0.83 | 0.82    | 0.62 |
| n-Myc    | 0.97 | 0.94    | 0.86 |
| Oct4     | 0.92 | 0.88    | 0.61 |
| Smad1    | 0.92 | 0.89    | 0.66 |
| Sox2     | 0.90 | 0.87    | 0.70 |
| STAT3    | 0.91 | 0.86    | 0.72 |
| Tcfcp2l1 | 0.88 | 0.83    | 0.79 |
| Zfx      | 0.97 | 0.96    | 0.82 |
| Average  | 0.91 | 0.88    | 0.75 |

He, Zhang, Zheng and Wei, 2012, **BMC Genomics** 



#### Accuracy (AUC) for PWM and CTF with different features



He, Zhang, Zheng and Wei, 2012, **BMC Genomics** 



### **Representative Publications**

Functional element finding in genomes

- CTF: a CRF-based TFBS prediction system
   \*BMC Genomics, 2012, 13(Suppl 8):S18
- Interactions between TFs and their DNA targets in Mammals
   \*BMC Genomics, 2012, 13:388
- Predicted and validated 734 novel human genes (MGC)
   *Genome Research*, 2009, 19:2324-2333
- Using ESTs to improve gene prediction accuracy
   \*BMC Bioinformatics, 2006, 7:327
- Gene prediction for *C.elegans, find >1,000 novel genes* \*Genome Research, 2005, 15:577-582.
   Reported by Nature Reviews Genetics as "Research highlight"
- Gene prediction for *C. briggsae PLoS Biology*, 2003, 1(2): E45



### On going work

- Finding and characterization of >30,000 novel human transcripts", Zhiqiang Hu and Chaochun Wei, submitted
- "CPA: a CRF-based protein acetylation site prediction system", Ting Hou, Guangyong Zheng, and Chaochun Wei, in preparation



### Summary

- Statistical models are powerful for genomic functional element finding.
- We have
  - built statistical models
    - HMMs, CRFs
  - applied those models to
    - Protein-coding gene structure prediction
    - TFBS finding
    - Protein acetylation site prediction
    - Alternative splicing prediction

They can also be applied in other areas in bioinformatics

- Sequence alignment
- Sequence classification





### Acknowledgement

### Students

- Yupeng He
- 🔷 Ting Hou
- Zhiqiang Hu
- Guangyong Zheng

Funding ♦ NSFC

### **•** 863

Shanghai Pujiang Program

48

