Methods and Algorithms for Gene Prediction

Chaochun Wei 韦朝春 Sc.D. <u>ccwei@sjtu.edu.cn</u> <u>http://cbb.sjtu.edu.cn/~ccwei</u>

Shanghai Jiao Tong University Shanghai Center for Bioinformation Technology

5/12/2011 K-J-C Bioinformatics Training Course

Outline

- 1. Introduction
- 2. Gene prediction methods
 - Gene prediction methods
 - HMM
 - TWINSCAN and N-SCAN
 - Using ESTs for gene prediction
 - Resources
 - Latest progress
- 3. Gene Prediction FAQs

1. Introduction: DNA

- DNA contains genetic information.
- DNA can be expressed as a sequence of letters A,C,G and T.
 - Eg: ACGTTTCGAGGT

DNA→RNA→Protein

RNA Processing

Introduction: Gene Structure

A gene is a highly structured region of DNA, it is a functional unit of inheritance.

Josep F. Abril et al. Genome Res. 2005; 15: 111-119

Sequence data from RefSeq of human, mouse, rat and chicken.

A Typical Human Gene Structure

Genes in a Genome

In a Mammalian Genome

Finding all the genes is hard

- Mammalian genomes are large
 - 8,000 km of 10pt type
- Only about 1% protein coding

DNA, mRNA, cDNA and EST

- EST:
 - Short (~650bs)
 - High error rate (~1-5%)
 - Contains only UTRs or coding regions

The Challenge and Opportunity

- ~3000 genomes
 - 222 animals
 - 93 plants

Annotation

Numbers from http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html

2. Gene Prediction Method History

Gener ation	Date	Feature	Systems	Information or Methods used
1 st	Early 1980s	Approximate ends of protein coding regions and non-coding regions	TestCode, Fickett 1982GRAIL, Uberbacher and Mural 1991	 splice sites promoters Codon usage bias Neuro-network methods
2 nd	Early 1990s	A complete single gene in a short sequence	 GeneID, Guigo et al. 1992 GeneParser, Snyder and Stormo 1993 FGENSH, Solovyev et al. 1994 	+ Translation start sites Stop sites Method: HMM
3rd	Mid- 1990s	Multiple complete or partial genes in a long sequence	Genscan, Burge and Karlin, 1997	<pre>■UTR ■Method: Generalized HMM</pre>
4 th	2000s	Complete gene structures in whole genomes	 Twinscan, Korf, et al. 2001 N-SCAN, Brown, et al. 2006 Twinscan_EST, N-SCAN_EST, Wei and Brent, 2006 	 Multiple-genomes Transcript products Method:Generalized HMM ¹³ Bayesian approach

Gene Prediction Methods (1)

- Categorization: by input information
 - 1. Ab initio methods
 - Only need genomic sequences as input
 - GENSCAN (Burge 1997; Burge and Karlin 1997)
 - GeneFinder (Green, unpublished)
 - Fgenesh (Solovyev and Salamov 1997)
 - Can predict novel genes
 - 2. Transcript-alignment-based methods
 - Use cDNA, mRNA or Protein similarity as major clues
 - ENSEMBL (Birney, Clamp, et. al. 2004)
 - Highly accurate
 - Can only find genes with transcript evidences
 - cDNA coverage 50-60%
 - + EST coverage up to 85%

Gene Prediction Methods (2)

Categorization: by input information

- 3. Hybrid Methods
 - Integrate cDNA, mRNA, protein and EST alignments into ab initio methods
 - Genie (Kulp, Haussler et al. 1996)
 - Fgenesh+ (Solovyev and Salamov 1997)
 - Genomescan (Yeh, Lim et al. 2001)
 - GAZE (Howe, Chothiea et al. 2002)
 - AUGUSTUS+ (Stanke, Schoffmann et al. 2006)

Gene Prediction Methods(3)

- Comparative-Genomics-Based Methods
 - TWINSCAN and N-SCAN
 - De novo
 - Assumption:
 - Coding regions are more conserved.
 - No transcript similarity information (like EST, cDNA, mRNA, or protein) is used
 - TWINSCAN-EST and N-SCAN_EST
 - Hybrid
 - Use EST to improve prediction accuracy

TWINSCAN: A Novel Gene Prediction System Using Dual Genomes

cDNA, mRNA, and protein) is used

Gene

Prediction

Hidden Markov Model:

Model behind gene predictors

HMM for two biased coins flipping

 $e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$

$$\pi^* = \arg \max P(x,\pi)$$

Most Probable Path and Viterbi Algorithm

Let $f_l(i) = \max_{\{\pi_0, ..., \pi_{i-1}\}} (\Pr(x_0, ..., x_{i-1}, \pi_0, ..., \pi_{i-1}, \pi_i = l))$ Recursion (i=1...L) $f_l(i) = e_l(x_i) \max_k (f_k(i-1)a_{kl});$ $ptr_i(l) = \arg \max_k (f_k(i-1)a_{kl}).$ Time complexity $O(N^2L)$ space complexity O(NL)

Probability of All the Possible Paths and Forward Algorithm

Let
$$f_l(i) = \Pr(x_0, ..., x_{i-1}, \pi_i = l)$$

Recursion (i=1...L) $f_l(i) = e_l(x_i) \sum_{k} (f_k(i-1)a_{kl})$

Probability of all the probable paths

$$P(x) = \sum_{\pi} P(x,\pi) = \sum_{k} f_k(L)$$

Posterior Probability and Forward and Backward Algorithm

Posterior Probability

$$P(\pi_i = k \mid x) = \frac{P(\pi_i = k, x)}{P(x)}$$

Posterior Probability and Forward and Backward Algorithm

$$b_{k}(i) = \sum_{l} a_{kl} e_{l}(x_{i+1}) b_{l}(i+1)$$
$$P(x) = \sum_{\pi} P(x,\pi) = \sum_{l} a_{0l} e_{l}(x_{1}) b_{l}(1)$$

Posterior Probability

$$P(\pi_{i} = k \mid x) = \frac{P(\pi_{i} = k, x)}{P(x)} = \frac{f_{k}(i)b_{k}(i)}{P(x)}$$

 π

TWINSCAN Model

- Generalized HMM
- Each feature in a gene structure corresponds to one state.
- State-specific length models.
- State-specific sequence models
- Use Conservation information

Conservation Sequence

Generated by projecting local alignments to the target sequence

human CTAGAGATGCAAAAGAAACAGGTACCGCAGTGC---CCC

mouse CTAGAG-----AGACAGGTACCATAGGGCTCTCCT

- Pair each nucleotide of the target with
 - "|" if it is aligned and identical
 - ":" if it is aligned to mismatch
 - "." if it is unaligned

N-SCAN: A Novel Gene Prediction System Using Multiple Genomes

- Uses Bayesian model to include phylogenetic tree information
- Predicts introns in 5'UTR
- Has Conserved non-coding regions

(Brown, Gross and Brent, Genome Res. 2005)

Using ESTs for Gene Prediction: TWINSCAN_EST

 Integrating EST alignment information into TWINSCAN to improve its accuracy where EST evidence exits and not to compromise its ability to predict novel genes.

Sequence Representation of EST Alignments

- 1. Use EST-to-genome alignment programs
 - BLAT (Kent 2002)
- 2. Project the top alignment for each EST to the target genomic sequence

Accuracy Measurement

- Annotated data sets for training/testing
 - RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
 - CCDS (http://www.ncbi.nlm.nih.gov/CCDS/)
- Accuracy in different levels
 - Nucleotide level
 - Exon level
 - Gene level
 - Transcript level
- Sensitivity and specificity

TWINSCAN_EST and N-SCAN_EST on the Whole Human Genome

An Example of N-SCAN_EST Prediction

(Hg17, chr21:33,459,500-33,465,411)

An Example of N-SCAN_EST Prediction

Experimental Validation of Predictions

Siepel, Genome Research, 2007

Experimental Validation of Predictions

• See

- The MGC Project Team, "The Completion of the Mammalian Gene Collection (MGC)", Genome Research, 2009, 19:2324-2333
- Wei, C., et al., "Closing in on the C.elegans ORFeome by Cloning TWINSCAN predictions", Genome Research, 2005, 15:577-582.
- Tenney, A. E. et al., "Gene prediction and verification in a compact genome with numerous small introns", Genome Research, 2004

N-SCAN/TWINSCAN Webserver: http://mblab.wustl.edu/nscan/submit

Resources for Gene Prediction

- Sequence data sets
 - Nucleotide Sequences (NCBI)
 - dbEST
 - mRNA
 - cDNA
- Annotations
 - RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
 - CCDS (http://www.ncbi.nlm.nih.gov/CCDS/)
- Genome Browser
 - UCSC Genome Browser(http://genome.ucsc.edu/)

Latest Progress in Gene Prediction

New Methods

- **Conrad: gene prediction using conditional random fields**. Decaprio et al., *Genome Res.* 2007 Sep;17(9):1389-98.
 - Not working for vertebrate genomes
- SVM for splice site

Sonneburg et al., *BMC Bioinformatics*. 2007;8 Suppl 10:S7.

- **CONTRAST**: Gross et al., *Genome Biology* 2007, **8:**R269
 - Best de novo gene predictor for human (gene level accuracy ~50%)
 - Used SVM and conditional random field

3. Gene Prediction FAQs (from Ian Korf)

- Algorithms vs. experts
 - Q: are expert biologists better than computer programs?
 - A: Yes and no.
- Next-generation sequencing
 - Q: Will next-gen transcript sequencing replace gene prediction?
 - A: No. Rare transcripts may require directed experiments to validate.
- Prediction accuracy
 - Q: Why are gene prediction programs inaccurate?
 - A: We don't always know why.

Gene Prediction FAQs (continue)

- Genes in my favorate genome...
 - Q: There is no gene predictor for it, what should I do?

Gene prediction for algal genomes

Microalgae

Macroalgae

A Typical Alga Gene Structure

A Typical Human Gene Structure

Gene Prediction FAQs (continue)

- Genes in my favorate genome...
 - Q: There is no gene predictor for it, what should I do?
 - A: Training a gene predictor or use one that is for another organism that is close to this genome. But it may be inaccurate.

Difficult genes

- Q: why some genes are not predicted by any program?
- A: They are statistical outliers.

Gene Prediction FAQs (continue)

- Just coding exons...
 - Q: why other parts are not predicted, such as noncoding exons, alternative isoforms, non-canonical splice sites, gene within genes?
 - A: There are trade offs.
- Pseudogenes
 - Q: why do some gene predictions have tiny introns?
 - A: Retro-pseudo genes often have very strong coding signals, because they are derived from highly expressed genes.

Gene Prediction FAQs (end)

- How can I tell a good gene prediction from a bad one?
- Scores have been assigned to every exon and intron of a gene. People can tell if a gene prediction is good or not by the scores of exons and introns of this gene.
 - You may have to run the program on your own computer to figure them out!

Acknowledgement

• Former lab members (WashU)

- Dr. Michael Brent
- Dr. Paul Flicek
- Dr. lan Korf
- Samuel Gross

