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Genotype-Phenotype Association

One of our ultimate goals in biological research is manipulating
important phenotypes by rational gene perturbation.
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Genotype Phenotype

Gene network would help us to map links between
genotype and complex phenotypes.




So we will discuss about

(1) How to construct a gene network

(2) How to use a gene network to map gene-phenotype association

Mapping functional links between genes

1. Protein-protein interaction
2. Genetic interactions

3. Genome context

4. Co-expression

5. Associalogs



Binary interactions

Methods Split proteins Assay/Readout
Yeast two-hybrid Transcription factor, ubiquitin Transcription
Protein fragment Dehydrofolate reductase Antibiotic resistence
complementation GFP or YFP Fluorescence

assay
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Cell 144. SnapShot (2011)



Experimental determination of PPI

Yeast two-hybrid (Y2H): Nature 340:245 (1989)

DNA binding Transcription
domain activation
domain

Core transcription

transcription

operator or
upstream activating
sequence

Reporter gene



High-throughput yeast two-hybrid by Protein array: Using
double transformation, one-by-one assay (Uetz et al. Nature 2000)

Array of haploid yeast cells
expressing activation domain-
prey fusion proteins

Two hybrid positive diploid yeast (on YLR:::_
selective media) probed with DNA- Ada2
binding domain-Pcf11 bait fusion protein = Py

A comprehensive analysis of
protein—-protein interactions
in Saccharomyces cerevisiae

Peter Uetz" 1, Loic Giot* 1, Gerard Cagneyt, Traci A. Mansfield {, Richard S. Judson?, James R. Knight{, Daniel Lockshont,
hlflr'm ,Pﬁuh , Alia Emilits$, Ying Li$, Brian Godwin, Diana Conovers,
1, Meijia I'-Ig‘t Mark Johnstonl, Stanley Fields t§ & Jonathan M. Rothberg?

\JAIURI: | VOL 403 | 10 FEBRUARY 2000

YLR423C » YPR049C «




High-throughput Y2H by Pooled mating (lto et al. PNAS, 2001)

Bait pools Prey pools
(MATa) (MATc)
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62 pools. To get all v

possible mating, they did

3,844 mating reactions. Two-hybrid selection

Amplify inserted genes (Ade*, His*, Ura*)

from positive colonies,

then read sequences to {y

obtain sequence tags,

which subsequently are Interaction Sequence Tags

subjected to a BLAST (ISTs)

search to decode A comprehensive two-hybrid analysis to explore the
interactions. Uetz also yeast protein interactome

did pooled mating assay. | i s e v




Y2H maps are not much overlapped.

The largest network reconstructed from interaction data

Proteins in the largest Interactions in the
network/total largest network/total
Dataset proteins (%) interactions (%)
Conventional studies* 1,003/1,858 (54) 1,504/2,209 (68)
This study?
Core data 417/797 (52) 544 /806 (67)
All data 2,838/3,278 (87) 4,224/4,475 (94)
Uetz et al. this study
IST approach core data
691 841

(35N
@ A comprehensive two-hybrid analysis to explore the
yeast protein interactome

Takashi Ito*!, Tomoko Chiba*, Ritsuko Ozawa', Mikio Yoshida$, Masahira Hattori*, and Yoshiyuki Sakaki"

Uetz et al. PNAS | April 10,2001 | vol.98 | no.8 | 4569-4574

protein array
281



Modeling PPI by hypergeometric distribution
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min(n,m)
p(#interactions 2 k| n,m,N) = Z p(i|n,m,N)

i=k

(nIN—n]
1 | m—1
p(i|n,mN)=
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where k = the number of times the interaction between A
and B is observed, n and m are the total number of inter-
actions for proteins A and B, and N is the total number of
interactions observed in the entire data set.

where




Protein-fragment complementation assay (PCA) Science 320:1465

Two proteins of interest are fused to complementary fragments of a reporter protein.
If the proteins of interest interact physically, the reporter fragments are brought
together and fold into their native structure, thus reconstituting the reporter activity of
the PCA.

No Interaction Interaction
No complementation Complementation

No growth Growth

Positive controls

Negative controls




Neither Y2H nor TAP-MS measures interactions between proteins in their
natural cellular context, and are not easily amenable to studying protein
complexes that are transiently associated or dynamic under different
conditions, that do not survive in vitro purification, or that cannot be
transported to the nucleus.

PCA provides a simple direct means for the detection of PPIs in vivo,
and do so with endogenously expressed full-length proteins in their native
post-translationally modified states and cellular location.

Survival-selection assay based on a mutant of Murine dihydrofolate
reductase (MDHFR) that is insensitive to the DHFR inhibitor methotrexate
but retains full catalytic activity and allows detection of PPIs with as few as
25-100 complexes per cell.

Tarassov et al. identified 2770 interactions among 1124 endogeneously
expressed yeast proteins. Most were not known by other previous studies.

However, precision-recall analysis of PCA shows generally worse
performance than Y2H (personal analysis results).



Molecular machines/Protein complexes comembership

Methods

Affinity purification/Mass spectrometry

Biochemical purification of affinity-tagged baits followed by
MS identification of copurifying preys

Complex 1

Complex 2
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Interaction examples
- Allosteric
- Chaperone-assisted

Interaction strength
-Stable
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Cell 144. SnapShot (2011)



followed by mass spectrometry (AP-MS)

High-throughput complex mapping by affinity-purification

— B [ —

Tagl Tag2

Affinity l
column2
- protein 1
ey rotein 2
Affinity SDS- a-.—>_’ Broteln 3

vV Vv

columnl
page ‘- — prote!n 4
+ protease Siﬁi:: 2
__. Trypsin digest,
T jdentify peptides by
mass spectrometry

Double round of purification

Affinity
columnl

reduce many false positives.



Precision (TP /TP + FP)

Modeling binary interactions from protein complexes (BMC bioinformatics 8:236)
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Recall (fraction of MIPS co-complex interactions)

Use hypergeometric probability

min(n,m)
p(#interactions 2 k| n,m,N) = 2 p(i|n,m,N)
i=k
where

nY N—-n

i m—i

[+)

where k = the number of times the interaction between A
and B is observed, n and m are the total number of inter-
actions for proteins A and B, and N is the total number of
interactions observed in the entire data set. When applied

p(i|n,m,N)=



“biologically significant”

~All protein interactions are functional interactions

Not all functional interactions are physical interactions

Many other biological data also can support functional interactions.

* Genetic interaction by synthetic lethal screen

« Genome context relationship with many sequenced genomes
» Co-expression across array of transcriptome profiles
 Many more...




Functional interaction from genetic (epistatic) interaction

Definitions of epistasis

Nature Reviews Genetics 5:618, 9:855, Genetics 149:1167

1. From the Mendelian (classical geneticist) viewpoint (by Willian Beteson

1909):

« The action of one locus mask the allelic effects of another locus, in the
same way that completely dominant alleles mask the effects of the recessive

allele at the same locus.

« Epistasis translates directly to “standing upon”.
* Frequently genes interact with one another, distorting simple Mendelian
ratios and sometimes leading to novel phenotypes.

Interaction Type A-B- |A-bb | aaB- |aabb
Classical ratio 9 3 3 1
Dominant epistasis - 12 3 | 1|
Recessive epistasis 9 3 4
Duplicate genes with 9 6 |

cumulative effect
Duplicate dominant genes 15 1
Duplicate recessive genes 9 7
Dc_:minant_& recessive 13 3
interaction . )

Some unusual segregation ratios.
Arrows join genotypes with similar
phenotypes.



Wild type

lin-26 mutant

lin-39 mutant

let-23 mutant

lin-26 lin-39
double mutant

lin-39 let-23
double mutant

lin-26 let-23
double mutant

Pn » Pn.p P VPCS mup vulval

lin-26 lin-39 let-23
cells cells cells

-

i W lin-39 et23
Pn.

cells 'é cellg _’ VPCs _’ cells

\

" lin-26 W let-23 -
n Pnp vuiva
cells > é VPCe ’ cells

cells

p
lin-26 lin-39 W
Pn d vulval

Pn.p 5
cells ™ cells i - cells

\
7

- W‘ . let-23 -
n.p vulva

cells 'd cells e e

\

.
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Pn Pn.p VPCs vulva
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.
dll .

P P lin-39 l

n n.p p vulval
cells cells i e cells
(.

Mendelian epistasis in the vulval
differentiation pathway of C.

elegans.

« The effect of lin-39 is masked by the
effect of lin-26, and thus lin-26 is
‘epistatic to’, and upstream of, lin-39.

« Similarly, lin-39 is epistatic to let-23.

Journal of Biology 8:35 (2009)



2. From the Statistical (population) geneticist viewpoint (by R. A. Fisher 1918):

« Any statistical deviation from the additive (or multiplicative depending on
scale) combination of two loci in their effects on a phenotype (epistatic
deviation).

« This is more inclusive than Beteson'’s definition because many forms of gene
interaction can lead to epistatic deviations.

Formal representation of epistasis

e=W,,-W,>W,

Where W,, W, and W, represent the fitness (or growth rates) relative to

wild-type organisms with mutation A, with mutation B, and with both mutations,
respectively.

€ = 0 for no epistasis
¢ <0 for aggravating, negative, synergistic interaction, synthetic sick,
synthetic lethal interactions

e > 0 for alleviating, positive, antagonistic, buffering, partial suppressor
interactions



SGA (Science 294.:2364)

a. A query mutation is first introduced
into a haploid starting strain, of
mating type MATa, and then
crossed to the array of gene-
deletion mutants of the opposite
mating type, MATa.

b. Sporulation of resultant diploid cells
leads to the formation of double-
mutant meiotic progeny. The MATa
strain carries a reporter, MFA1pr-

- HIS3, that is only expressed in MATa
¥ Conaenieatpr 53 meiotic progeny, which ensures that
carryover of the diploid parental
strain and/or conjugation of meiotic
progeny does not give rise to false-
negative interactions.

c-f. Both query mutation and the gene-
deletion mutations were linked to
dominant selectable markers to
allow for selection of double
mutants.

Double mutants with slow growth
are synthetic sick/lethal partner
candidate.

Limit: cannot test essential genes, false
positives (~50%)

3 CANI  mm canlA:MFAJpr-HIS3 O Q Wild-typealleles @ @ Deletion mutations

Nature Reviews | Genetics



10 L1 worms

50 ul bacterial RNAI feeding strain

Strain:

Target gene number
1234567809101112
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Genetic interaction screen for C. elegans
using RNA interference (Nature Genetics 38:896)

« Target genes are knock down using RNAI by

bacterial feeding in the background of
defective query gene.

 Lehner et al. screen ~1750 RNAI library genes

for signaling pathway components for 37
guery strains, so tested ~65,000 pairs, and
identified ~350 genetic interactions. All 37
guery genes function in signaling pathways
that are mutated in human diseases including
components of the EGF/Ras, Notch and Wnt
pathways.

« They identified a class of highly connected

‘hub’ genes: inactivation of these genes can
enhance the phenotypic consequences of
mutation of many different genes. These hub
genes all encode chromatin regulators, and
their activity as genetic hubs seems to be
conserved across animals.




Mechanistic interpretation of genetic interactions

a Between-pathway genetic interactions

Pathway A Pathway B

/0-0-0
'0-0-0

Essential biological function

{

Cell proliferation

b Within-pathway genetic interactions

Essential
function

Wild type

!

O
l

Essential
function

Viable

©
!

O
|

Essential
function

Viable

O
O

l

Essential
function

Lethal

* Possible mechanisms depend on the characteristics of the interacting alleles. The common
interpretation is that the genes function in parallel pathways that impinge on a shared essential

function. This is often referred to as the ‘between-pathway model’ and typically reflects

bidirectional genetic redundancy, in that each pathway compensates for defects in the other.
« Conversely, in the ‘within-pathway model’, synthetic lethality indicates that both gene function

in the same essential pathway, the function of which is diminished by each mutation.

* It has been demonstrated that positive genetic interactions can identify pairs of genes for
within-pathway (Cell 123:507, Nature 446:806), whereas negative genetic interactions exist for

between-pathway (Science 303:808).



Modeling genetic interactions using protein physical interaction map
(By Kelley and Ideker, Nature Biotechnology 23:561)

Used both between-pathway and within-pathway models. Here, ‘pathway’ is
loosely defined as any densely connected set of proteins in the physical
network. This method can explain ~40% of known genetic interactions that
time, and between-pathway explanations are better than within-pathway
explanations.

Network model S
: identification ignificant
Genetic network Between-pathway models
Type Source No. Number of models
Synthetic lethal SGA 2,012 > - : o 360 between
Synthetic sick SGA 2,113 - 5"-. 91 within
Synthetic lethal MIPS 724 gy 2 iy
= gty - Number of interactions
gy - 1,922 genetic
2,082 physical
S 4 Within-pathway
Physical network
Type/direction Source No. : .
Protein-protein  DIP 15429 B ’ Validation
Protein-DNA Lee et al. 5,869 - . .
Reaction-reaction KEGG 6,306 p - E?é:ﬁg?e%f#m?gfcr}?ons
¥ = = =  Genetic
~ Physical




Pathway links by direct genetic link
VS.
Pathway links by similarity between genetic interactors

< 80

@ of —— links by SL interaction (Prob)

= 70 1 —&— links by correlation between SL profiles of

> 1673 query genes (PCC)

‘§ 60 links by correlation between SL profiles of

< 3885 test genes (PCC)
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Recall of total yeast genes (%)

- Why? Many direct genetic interactions are between pathways, thus
they do not support functional association.




Discovery of functional interaction from Genome sequences

Genomes carry intrinsic information about the cellular
systems and pathways they encode. This information can be
revealed by comparative genomics.

1 genome ---> can model the genes

>1 genome --> can model
the functions of the genes
gene, pathway & organismal evolution
genomic/organismal diversity
molecular characteristics of speciation
etc...




Methods for using comparative genomics for discovering pathways:

(1) Analyzing gene fusions
“Inferring protein interactions from genome sequences on the basis of
the observation that some pairs of interaction proteins have homologs
In another organism fused into a single protein chain” (Nature 285:751)

(2) Analyzing gene phylogenies
“Proteins that function together in a pathway or structural complex are
likely to evolve in a correlated fashion. During evolution, all such
functionally linked proteins tend to be either preserved or eliminated in
a new species.” (PNAS 96:4285)

(3) Analyzing operons (Conserved gene neighbors)
“One of the most striking features of prokaryotic gene clusters is that
typically they are composed of functionally related genes.” (PNAS
96:2896)

Genes --> comparisons between the genes from different organisms
--> discovery of pathways --> integration of the pathways for all
of the genes of a single organism --> “global” view of pathway



Genome context approaches

(a)
(b)
Query protein
Linked protein
Rosetta protein
(c) Genome 1 Genome 2 Genome 3 !
oy
Protein A 1 1 1
Protein B 1 1 1
Protein C 1 0 1
Protein D 1 1 0

Gene neighbors

Gene fusion
(Rosetta stone
proteins)

Phylogenetic
profiling



1. Gene Fusion

Some pairs of interaction proteins have homologs in another organism
fused into a single protein chain.

Yeast Topoisomerase Il
E. coli gyraseB

E. coli gyrase A

Human succinyl CoA-transferase S
E. coli acetate Co-A transferase c 1
E. coli acetate Co-A transferase 3 T}

B.subtilis DNA POl Il (!  se—T
E. coli DNA pol 1l o K

E. coli DNA pol lll € I

Yeast histidine biosynthesis HIS2 —_—
E. coli histidine biosynthesis HIS2 C

E. coli histidine biosynthesis HIS10 -

3

'
Human 6-1-pyrroline-5-carboxylate synthetase —_ [ I
E. coli y-glutamyl phosphate reductase C T T 1]

E. coli glutamate-5-kinase (e
Science 285, 751-753 (1999)




Functional similarity
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Prediction of gene pathways by gene fusions

Random
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Significance score of linkage
log p(A,B linked by random chance)



2. Phylogenetic Profiling

During evolution, all such functionally linked proteins tend to be either
preserved or eliminated in a new species (co-evolution).

Genomes

Genes

Ribosomal

Purine
metabolism

..

DNA repair
P

7~ MSH1

~PMS1
@ VLH1
@ PMS1

MSH5
@\VISH3
@\VISHs
@VISH2
\_ MLH1

(’YPL207VV

RPS4B
RS4E
EIF2A
RNAP27
R37A
RPL43B
RPS6A
RS6
RS33
RS33

RL31A
R27A

ADE13
PUR2

1

PURA

}

aero
aful

mjan

mthe

paby
paero
pyro

hpyl

hpyl99
mgen

mpne
mtub
rpXx

syne

tmar

tpal

cele

aqua

bbur

bsub
cpne
ctra

ecoli

hinf

® - Implicated
in human
colorectal
cancer

; Nature 402, 83-86 (1999)



57 Genomes

: . <
Phylogenetic profiles Eukaryotes
of ~6000 genes of Yeast— |Archaea Bacteria Eukaryotes
Saccharomyces cerevisiae A

Red=Present
Purple=Absent

Eukaryote
specific
genes
~6000 \
Yeast
genes
Yeast &
fungi
specific
genes
It IS a very sparse matrix!




Estimating the significance of
matching phylogenetic profiles

Profile 1: 00000000010000000000000000000
Profile 2: 00000100000000000000000000000

Profile 1: 00010111000110010110011110011
Profile 2: 00010111100110010100011110011

The distance between both pairs of profiles is 2 bits.

However, the first pair 1s much less complex, therefore less informative,
than the second pair.

Mutual information = Entropy (Profile 1) + Entropy (Profile 2)
- Relative Entropy (Profile 1 and 2)



Functional similarity (%, log scale)

100

10

Prediction of gene function by phylogenetic profiles

0 ._

. B E. coli

— E. coli fit
- O Yeast o

~~~~~~~ Yeast fit O
_ [ ]

Ryeast =(0.871
[ [ [ [ [

0.0 0.2 04 0.6 0.8 1.0 1.2

Significance score

(Mutual information of phylogenetic profiles)

Date et al. NBT 2003



Network by Phylogenetic profile links

S o

~ 650 £. coli proteins
> ~ 2 000 functional links
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Synthesis Transport

Electron & Signal
Transfer Transduction

NADH

Dehydrogenase 23047 ( /\ /i

subunits b
Protein
Synthesis

Cell Wall
Synthesis,
Cell Division

& Protein

) Synthesis
His/Arg
Biosynthesis
gopE
Unchgnl'i::t(:r' ed A 47 yghB
iz ; :
Metabolism Sugar RIOAYIRGES Isoprenoid
Transport Biosynthesis
Flagellar Export
& Secretion y2 B o2
E Peptide
Transport
Membrane & ol i
Transport Receptors Urease
Proteins subunits
ygfE— )

_ e ~ 650 £. coli proteins
P agellar . .
yc£ :(?mM Biosy?rlthesis ~ 2,000 functional links




Ribosome,
Proteasome,
& RNA/DNA
Polymerases / -}

Mixed: Signal
» \Transduction &
7 Cell Structure
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3. Conserved gene neighbors in bacteria

Prokaryotic gene clusters are composed of functionally related

genes (Operon).

Can be Inferred operon in
eukaryotic |, organism #1 i > PR N\
genome '
Conserved gene
: neighbors in
Bacterial organism #2 i > >
genome only
Conserved gene
neighbors in > m
organism #3

Bacterial Orthologs of organism #1
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Nature Biotechnology 22:911



Inferring functional interaction from co-expression pattern

Analysis of Gene X in data set #1

« Assumption: genes for same biological
processes are under same transcriptional

Profile for Gene X

c
Data set #1 %/\—\/\/ roaram
(] .
2 prog
s
g Samples
\\::\\ Coexpression Links S
ey SMD Cell cycle
~ 4 & 3 -
e, S, Sicf | - 4+ sigmoid curve fit o
\\ ~ ;
. /\\‘\N =
\\ . ;
. -
o
@©
o
(V-
o
o
Analysis of Gene X in data set #2 S
Profile for Gene X g
3]
X
Data set #2 5 =
i o
o o
S —
]

Samples 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pearson correlation coefficient

«  With massive amount of microarray
data, it turned out to be one of most
powerful data for pathway modeling.

-
-
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- ’
-
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Lee H K et al. Genome Res. 2004;14:1085-1094



Associalogs method (Lee et al. Nature Genetics 2008)

« Inferring functional links in Target Organism (e.g. Yeast)
the target organism by

transferring information from
other organisms’ gene < >
networks. Functionally

A associated genes 4

« Similar to Interolog method, l |
but transfer not only | |
protein-protein interactions | |

but also functional Orthologs with ! | Orthologs with

association, which.is much identity I | | identity s
more comprehensive. |

I
« Transferred associalogs from

|

|

animals to plant can predict ¥ Functionally f
plant-specific pathways (Lee et associated genes

al. Nature Biotechnology 2010) < >

Source Organism (e.g. Worm)
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Constructing a functional gene network

raw data
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!

O mMmmoOOmW>

;
E G
integrated matrix %0
B [

K( NETBIOLAB.org

YONSEI UNIVERSITY

networks

A B CDETFG

A
B c

_> D
g
F G

A

confidence

Fraser & Marcotte, Nature Genetics (2004)
Lee et al. Science (2004)



Standardization of data intrinsic
scores by an Unified Score

Based on Bayesian Likelihood

Posterior Odds ’\

Log Likelihood Scores (LLS) = In [ P(I|D) /~P(|ID)j
P(1) /~P(I)

Prior Odds —/

I: two genes interact each other (with
at least one shared functional
annotation)

D: given data

If LLS = 0, equal to random chance
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of pairs of gene expression vectors

with log likelihood scores



NETBIOLAB.org

YONSEI UNIVERSITY

Integrating diverse functional genomics data @
\)

produces a larger and more accurate network
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Network of functional modules
by YeastNet v.2
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Network-guided discovery of f\ NETBIOLAB o
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Large .ata:

Gene expression,
Yeast two-hybrid,
Protein complexes,
in silico prediction,

=» Candidates connected to
~150 known ribosome
biogenesis genes

Synthetic lethals...
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(~ 95% proteome) 150
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Li et al. PLoS Biology (2009)



Experimentally validated ~40 new ribosome @NETBIOL/\B.O@
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YONSEI UNIVERSITY

biogenesis genes from 100 tested candidates

A updated network of ribosomal
biogenesis (RB) system

O Known RB genes (seeds)

. New RB genes

Li et al. PLoS Biology (2009)
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“Network-guided focused genetics” \{

Key ldeas

» Gullt-by-association: connected genes in a network are
functionally associated

»Seed & connections to seed: select unknown genes
connected to known seed genes

»Focused test: ONLY genes highly connected to seed

»Reduces time, labor, and can rescue false negatives

»Easier interpretation : functional clues from network
neighbors




Gene network for Systems Genetics

What is Systems Genetics?

“Mendel’s genetics has its focus on single-gene traits. However,
phenotypic variation, including many human diseases, often results
from multiple interactions among numerous genetic and
environmental factors. Systems genetics seeks to understand this
complexity by integrating the questions and methods of systems
biology with those of genetics to solve the fundamental problem of
interrelating genotype and phenotype in complex traits and diseases.”
(Nadeau and Dudley, Science 2011)

Therefore, Systems Genetics = Systems Biology + Genetics

Here, we have gene networks as a Systems Biology method.



Predict genes associated to a phenotype

using seed genes and gene network

Rank rest of genes by weighted
sum of links to seed set

‘Seed’ genes that New candidates for
exhibit a phenotype showing phenotype

of interest
McGary et al. Genome Biology (2007)



How do we measure predictive power

(Q@ NETBIOLAB.org
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of a network for a given phenotype?

AUC Predictive

power
1.0 High
0.6 Low
0.5 = random

Network location patterns of genes of interest (@ ).

Genes are not well Genes are highly
connected in the network. connected in the network.

A i

Rank all genes of the network by
sum of connection to all ®s.

v N

True positive rate
True positive rate

0 1 0 1
False positive rate False positive rate



Specific yeast knockout phenotypes can be predicted.

True positive rate (TP/(TP+FN))
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Predictive network for animals and plants?

Expected to be very difficult. Why?

* Much larger genome

- Combinatorial Explosion of the number of gene pairs

- ~18M tests for yeast vs. ~200M tests for human
- Do we have ~10fold more data?

= Multiple cell/tissue types

- single cell for yeast vs. 100 trillion (M of M) cells for human

- ~200 known distinct cell types for human

- But we have a single integrated network model for all cell types
- Many raw data are not cell/tissue type specific (e.g., Y2H)

* Would animal or plant networks be equally predictive?



Tested in C. elegans (Worm). Why? @NETBIOL]\B.org
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 Only 959 cells for a whole body (for adult
hermaphrodite)

 High-throughput gene silencing by bacterial
feeding RNA interference (RNAI)

Caenorhabditis
elegans
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WormNet: C. elegans probabilistic gene network \§

Protein physical interactions

- yeast two-hybrid interactions from fly, worm, human

- yeast affinity purification/mass spectrometry interactions
Co-expression across 855 C. elegans DNA microarray experiments
Linkages from computational genetics

- coinheritance of genes (phylogenetic profiles)

- location of homologs in the same bacterial operons (Gene neighbors)
Genetic interactions

- ~4,000 C. elegans genetic interactions
Yeast probabilistic gene network (YeastNet v.2, PLoS One 2007)
Literature mining for C. elegans interactions

Analyzed >20 millions
experimental observations

\ 4
Version 2: 999,367 links / 15,139 genes (~75% of proteome)




Specific C. elegans RNAI phenotypes can be predicted. K(Qq; NETBIOLAB org
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100
—— Lifespan increased Polyglutamine toxicity
—_ —==- Body morphology defect Synthetic multivulva
X Nonviable Transposon silencing defective
~ ———- Dumpy — RNAI defective
P — Growth defective ——=- Egg osmotic integrity abnormal
> 50 Clear Pace of development abnormal
= Patchy coloration Pace of P lineage
2 Protruding vulva development abnormal
() —— Small Severe early pleiotropic defects
w Radiation sensitive ——-—- Long
Molting defect —=—- Ruptured
0 l I ° [ °
0 50 10029/43 RNAi phenotypes are predictive!

1-Specificity (%)

Functionally linked genes in an animal network therefore
also tend to exhibit related loss-of-function phenotypes

Lee, Lehner et al. Nature Genetics (2008)



Massive amount of Genetics data are publicly available.

Q(g NETBIOLAB.
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Do we understand inheritance of complex phenotypes now?

By 04/13/2011, 862 GWAS papers published, 4306 trait-associated SNPs
(A catalog of GWAS)

How much trait can we explain by the trait-associated SNPs?

Phenotype Number of GWAS loci Proportion of heritability
explained (%)*
Type 1 diabetes 41 ~60
Fetal haemoglobin levels 3 ~50
Macular degeneration 3 ~50
Type 2 diabetes 39 20-25
Crohn’s disease 71 20-25
LDL and HDL levels 95 20-25 .
Height 180 15 (Nature 470:187)

Where the missing inheritance of complex traits come from?

1. Lack of statistical power to detect weak genetic penetration per each SNP.
2. Lack of considering polygenic effect for traits (Epistatic interactions).
Thus, the next challenge in genetics of complex traits is (1)

Improving statistical power to identify more trait-associated
genes, (2) mapping epistatic interactions. But How?



Boosting GWAS signal by HumanNet @NETBIOL/’\BD@
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« ltis very hard to pass the statistical test with Bonferroni correction.
« Many minor contributors are below the threshold.
« Can we boost GWAS signal by pathway relations?

15 1

3 .
. . !
* o 0 ’ 1., * .
» 4

_ Chromosome and position
Analysis:

« Boost original p-values from WTCCC(Welcome Trust Case Control
Consortium) 2007 study

« Validate boosted genes by newly identified genes by meta analysis
with larger sample (Barrett et al. 2008, Zeggini et al. 2008)

Lee, Blom, et al. Genome Research 2011

5{¢ 3% &
e ey
1

22 X



Validation by meta GWAS data: Crohn’s disease @NETBIOL/’\BD@
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)
posterior
log odds

3

Network
boost

WTCCC study:
2000 cases,
3000 controls

Meta analysis:
3230 cases,
4829 controls

Original study identified IL23R, PTPN2, ATG16L1
STATS3, JAK2, GRB2, SHC1 are strongly boosted.



Validation by meta GWAS data: type 2 diabetes @NETBIOL/’\BD@
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« Original GWAS identified TCF7L2 WTCCC study:

- BACH2, PARD6G, PARD3B, CDC42 are strongly boosted. 2000 cases,
3000 controls

Meta analysis:

Prior log odds 4549 cases,
5579 controls

posterior
log odds

3

Network
boost




Complex diseases are due to complex networks

NETBIOLAB.org
of disease related genes. N0 vouseionwersi

“*Genetic interactions to
two major tumor
suppressor genes, p53
and p19ARF construct
the network of genes that
are likely to cooperate In
tumorigenesis.”

Cell, May 16, 2008
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Modifiers of the same gene are interconnected. \(Q%’NETB'OU\B-O@

Hypothesis:
genetic modifiers for the same disease gene
tend to participate in the same pathway.
Disease pathway Known genetic modifiers
for a disease gene

by network, their network neighbors [

04 06 0.8 1.0
If known disease gene modifiers AUC

are well connected one another

are likely to be additional modifiers 04 06 0.8 1.0
for the same disease gene. AUC

o

04 06 08 1.0
AUC

20 genetic interaction sets
in worm by Lehner et al
in yeast by Tong et al

122 genetic interaction sets

i

04 06 08 1.0
AUC

11 genetic interaction sets
in worm by Byrne et al

44 genetic interaction sets
in yeast by Davierwala et al.

Lee et al. Genome Research (2010)



Identification of genetic modulators for (\

three disease-related genes in worm
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False positive rate

Tested ~90 additional
candidates for each.

Compared to original
semi-random screen, it

shows >7 fold enrichment.

Strain
N2 (wild-type) vab-1(e699)

control

RNAI

ada-2

apa-2

Lee et al. Genome Research (2010)
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Pathways modulating disease genes in worm \(
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Lee et al. Genome Research (2010)
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