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Is Microbiology Vanishing?

Why? — Most of the researchable problems are
either “having been solved,” or “too difficult to be solved.”

1. Clinical microbiology:
Pathogen and host: mechanism of pathogenesis and virulence,
Immune response and escape

2. Agriculture and industry microbiology:

A well developed applied science, great contributions and great potential.
How to further improve the present industry?
How to solve the difficult problems?

3. Basic research in microbiology:
Known. Unknow. Hard to know
Fundamental problems + Key technology platforms



Microbial Genomics Research:
An opportunity and challenge to revitalize microbiology

m Initiation of microbial genomics:
Model system for human genomics

m  Advantages of microorganisms as targets for genomic studies:
Highly diversified physiology
Extremely long history of evolution
Close relationship with host/environment
Relatively small genome size
Relatively easy for functional analysis
m  Microbial genomics solved the bottle-neck technology for further
development of microbiology:

It is impossible to establish genetic systems for each of the majority
of the organisms being studied

m  New scientific challenges brought in by microbial genomics
research:
Environment and evolution
Structure and function (novel genes)
Non-cultured microorganism



Historical Recall

m  \Whole genome sequencing for bacteriophage and
virus chromosome: ¢X174 (1978, 5386bp)

m  Microbial genomics research before the heat wave of
HGP:

E. coli Kohara library (cosmid contig, middle 80’s), model
systems for HGP (early 90’s)

m  [he completion of the genomic sequence of
Haemophilus influenzae Rd (1995, 1.8Mb, encoding
1743 hypothetical genes):

Whole genome shotgun sequencing strategy (500 bps/read)

and bioinformatics (assembly and annotation/gene
assignment).



Status of Genomic Sequence for
Microorganisms

m June6, 2000

Completed, present in public databases [31 genomes]
Completed, annotation in progress [17 genomes]
Sequencing in progress [70 genomes]

m October 28, 2001

Completed, present in public databases [58 genomes]
Completed, annotation in progress [17 genomes]
Sequencing in progress [110 genomes]

m April 19, 2003
Completed [112 genomes, NCBI]

m  May, 2011

Completed [ 1676 Bacterial, 89 Archaeal and 305 Eukaryotic genomes,
NCBI]



Some basic guestions asked for
microbial genomics research

m  Are new concepts emerging about how cells work?
Yes.
Completeness, Comparison and Compact

m Have there been practical benefits in the fields of
medicine and agriculture?
Perhaps.
Encapsulation, Type 111 secretion system, Pathogenicity
Islands and symbiotic islands
m s it feasible to determine the genomic sequence of
every bacterial species on Earth?
No. But...



How to start? Selection of research objectives

m Significance (scientific and application)
Medicine:

m Disease mechanism, drug resistance, new drug targets,
candidate protein for vaccine development

Agriculture, industry, ecology and environment:
m Secondary metabolism, pollution, remediation

Science:
m Evolution, origination of sub-cellular organelles,
m genetic resources, non-cultured microorganisms

m Technology development

m Reliability of the biology for the strains being
sequenced.



Microbial Genomics Research in China
(1999, the starter)

Human Genome Project of the Knowledge Innovation Program,
Chinese Academy of Sciences:

Thermoanaerobacter tengchongensis MB4:

Sequence completed by BGI. Established the technology and
the research team for 1% human genome project

Before Sept. 2000: Shotgun sequencing finished. 110,000 reads.

Jan. 2001: Assembly finished. Sfil, Ascl and SgrAl in silico physical
map matched with the experimental data.

Feb-May, 2001: Annotation employing Glimmer and other software.

2002: Qiyu BAO et al. A complete sequence of the T. tengcongensis
genome. Genome Research 12: 689-700
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Microbial Genomics Research in China (2000-, Step Up)

m Shigella flexneri strain 2a:

The first pathogenic bacterial genomic sequencing
project.

2000: Sequencing finished within one year.

2002: Qi JIN et al. Genome sequence of Shigella
flexneri 2a: Insights into pathogenecity through

comparison with genomes of Escherichia coli K12
and O157 Nucleic Acids Res. 30 (20): 4432-4441

m Leptospira interrogans serogroup Icterohaemorrhagiae
serotype lai

m Staphylococcus epidermidis ATCC 12228

m  Xanthomonas campestris pv. campestris strain
8004



Tahle 1. Gemanl feamems of e SEO01 gewme oompanad widh pewmes of
Eeoll K12 and 0157, and ther vinelesce plasmed. pWHR 301, froen £ e veerd

BT Sa

(b Cenree AR Y O [ 5 Y e
Total keegndy dpj 40T B 4 GG EE] & AR 445
B of waal (KRFs 4434 Kl it A345
Avemge lesgds of (REs (bpj ] | G, G
Pemennge of codimg sequence ) &204 ET % L7l |
G 1 comi

Total gesoane 5% AL EG AT A0
Pecacim codhisg regions (96§ A15% A=A 141
R gemes (9% ) AT RERE | A mE
Imdeppemic nepions (% ) i T 4R 42 T
Fabomomml BNA

Moo of 165 T T T
Mo of 235 T T T
Mo of 35 b b b
Moo of srmefer RMA o orx E e
Moo of mnlA 1 1 i
Mo of momclsscal BNA o i i
Trassh muons omd §mversons” 12 - |

15 elemsas 114 A 4
e whac b parml copees 1) T 1%
Plazernd pCP2G1 pWRAO1"

Toaal bengrds (bp) &I X RS

B of eenl (FRFs T ]

Avemge keagh of (HEFs (bp) ] it

Pemennge of coding sequenee T2 i

G 1 comi

Towml &% 4477 K

i ool mg e o (% ) 42 4l G

Imbeppemie negions (9% ) dad A5 4385

15 elem=as =R G

e whac b panml copees it e

kanare from Blamser & @l (10}
Hram mre fmen Pema el (11L

kmlty 1o wm by (D30 sepmenss 25 kb ore ad

Aramm mre foen Vednsas e ol (S)

&7 7 f{f T

sfam

¢ {Termnus {orgin  *
HG1655 L i 1 1 : 1 i 1 I i .

%%:::,, %"‘%z:“ s,

4:;/
500K, 7
\ P {\, E
—_ ©fd rtaF rfag  riap [E—
WG1655 -_—_-——-_—-—-_— bdea
AT4400 AT¥EI00 1?‘1? Ril] \.‘I?IH M]ﬁ q 1r.n?1n:: wonz00 IMIT000
i | | |
1 ] T T T T | ]
1EINW First o e Pk (904 1776409 1TTRZ00 aTeoooo 17ei00
-—- sl rfaf waa¥ rfal wrif risd rfai nsh ingd TutH e
BEA0L " f——— e e f— 4 G bt
19200 1771004 I Ta00 174600 ITEd00 A Lyl ] LRETL L]
| | 1 | 1 1 | 1
| | | | | | |
4613400 ARIL300 4617900 L1990 AR20e00 422400 Asz4z00
EDLO3) pob i o0 wad T el st ot i e W
shat raal N N -_—— Ritd  hch S {4 4EE

Figure 4. Conparison of the rfa/waa segion (1o scalel. Azmows indicate predicied ORE in both strands. Regiens in geay indicaw idenfical saquences among
strains and the non-filling areas indicate sequences with non or low homology.



Genome-based analysis of virulence genes in a non-biofilm-
forming Staphylococcus epidermidis strain (ATCC 12228)

Yue-Qing ZHAO et al. Mol. Microbiol. 49 (6): 1577-1593 (2003)

1584 Y.-Q. Zhang et al.
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The value of genome sequences lies
In thelr annotation

m Annotation - Characterizing genomic features

using computational and experimental
methods

m Genes: Four levels of annotation

Gene Prediction - Where are genes?
What do they look like?

Domains - What do the proteins do?
Role - What pathway(s) involved in?
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Generalized Genome Annotation
Flowchart =

U Prediction of
General structural
database Statistical gene features
search k prediction

Gene/protein/
RNA set

Specialized
database search

|

Predicted gene
functions

i

Context analysis/
LEROMe COMPAarison




Genome Annotation Explained

FB: feedback from gene identification for correction of sequencing
errors, primarily frameshifts

General database search: searching sequence databases (typically,
NCBI NR) for sequence similarity, usually using BLAST.

Specialized database search: searching domain databases, such as
Pfam, SMART, and CDD, for conserved domains, genome-oriented
databases, such as COGs, for identification of orthologous
relationship and refined functional prediction, metabolic databases,
such as KEGG for metabolic pathway reconstruction, and possibly,
other database searches.

Statistical gene prediction: use of methods like GeneMark or
Glimmer to predict protein-coding genes.

Prediction of structural features: prediction of signal peptide,
transmembrane segments, coiled domain and other features in
putative protein functions.



What are genes?

m Complete DNA segments responsible for
making functional products

m Products
Proteins

Functional RNA molecules
= RNAI (interfering RNA)
= IRNA (ribosomal RNA)
= SNRNA (small nuclear)
= SNORNA (small nucleolar)
m tRNA (transfer RNA)



Expansions and Clarifications

m ORFs
Start - triplets - stop
Prokaryotes: gene = ORF
Eukaryotes: spliced genes or ORF genes

m EXxons
Remain after introns have been removed

Flanking parts contain non-coding sequence
(5’-and 3'-UTRs)



Gene identification

m Homology-based gene prediction
Similarity Searches (e.g. BLAST, BLAT)
RNA evidence (ESTSs....)

Ab Initio gene prediction
Prokaryotes

m ORF identification
Eukaryotes
m Promoter prediction
m PolyA-signal prediction
m Splice site, start/stop-codon predictions



Approaches to Gene Finding

m Direct

Exact or near-exact matches of EST,
cDNA, or Proteins from the same, or
closely related organism

m Indirect

Look for something that looks like one
gene (homology)

Look for something that looks like all
genes (ab Initio)




Homology-based gene prediction

m Similarity Searches (e.g. BLAST)
m Dependent genomes closely



ADb Initio gene prediction

m Prokaryotes
ORF-Detectors

m Eukaryotes

Position, extent & direction: through promoter
and polyA-signal predictors

Structure: through splice site predictors

Exact location of coding sequences: through

determination of relationships between potential
start codons, splice sites, ORFs, and stop codons




Bioinformatics as Extrapolation

m Computational gene finding is a process of:

Identifying common phenomena in known
genes

Building a computational framework/model
that can accurately describe the common
phenomena

Using the model to scan uncharacterized
sequence to identify regions that match the
model, which become putative genes

Test and validate the predictions



Prokaryotic gene model: ORF-genes

m “Small” genomes, high gene density
Haemophilus influenza genome 85% genic
m Operons

One transcript, many genes
m  No introns.

One gene, one protein

m Open reading frames

One ORF per gene

ORFs begin with start,
end with stop codon (def.)




What Is It about genes that we
can measure (and model)?

m  Most of our knowledge is biased towards protein-coding
characteristics

ORF (Open Reading Frame): a sequence defined by in-frame
AUG and stop codon, which in turn defines a putative amino
acid sequence.

Codon Usage: most frequently measured by CAI (Codon
Adaptation Index)

m  Other phenomena
Nucleotide frequencies and correlations:
m value and structure
Functional sites:
m splice sites, promoters, UTRs, polyadenylation sites



A simple measure: ORF length
Comparison of Annotation and Spurious
ORFs In S. cerevisiae
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Codon Adaptation Index (CAl)

CAl = || ff
(

codon

I=codons

codon ). |

m Parameters are empirically determined by
examining a “large” set of example genes

m This Is not perfect

Genes sometimes have unusual codons for a
reason

The predictive power is dependent on length of
sequence




Genomic sequence features

m Repeats (“*Junk DNA”)

Transposable elements, simple repeats
RepeatMasker

m (Genes
Vary in density, length, structure

Identification depends on evidence and methods and may
require concerted application of bioinformatics methods
and lab research

m Pseudo genes
Look-a-likes of genes, obstruct gene finding efforts.
m Non-coding RNAs (hcRNA)

tRNA, rRNA, snRNA, snoRNA, mIRNA
tRNASCAN-SE, COVE



http://repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker
http://www.genetics.wustl.edu/eddy/software/

Prokaryotic Gene Prediction

Glimmer

GeneMark

Critica

ORNL Annotation Pipeline



Non-protein Coding Gene
Tools and Information

m tRNA
tRNA-ScanSE
m http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
FASIRNA
m http://bioweb.pasteur.fr/seqanal/interfaces/fastrna.html

m SNORNA
snoRNA database
m http://rna.wustl.edu/snoRNAdb/
m microRNA
Sfold
m http://www.bioinfo.rpi.edu/applications/sfold/index.pl
SIRNA
m http://bioweb.pasteur.fr/seqanal/interfaces/sirna.html



http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://www.genetics.wustl.edu/eddy/tRNAscan-SE/
http://bioweb.pasteur.fr/seqanal/interfaces/fastrna.html
http://rna.wustl.edu/snoRNAdb/
http://harlequin.jax.org/genes/hsp53.fa
http://bioweb.pasteur.fr/seqanal/interfaces/sirna.html

The annotation pipeline

m Mask repeats using RepeatMasker.
m Run sequence through several programs.

m Take predicted genes and do similarity search
against ESTs and genes from other organisms.

m Do similarity search for non-coding sequences
to find ncRNA.



General Things to Remember about
(Protein-coding) Gene Prediction

Software

m It is, in general, organism-specific

m [t works best on genes that are reasonably
similar to something seen previously

m |t finds protein coding regions far better than
non-coding regions

m In the absence of external (direct) information,
alternative forms will not be identified

m [t 1s imperfect! (It’s biology, after all...)



Open Challenges in Predicting
Prokaryotic (Protein-Coding) Genes

m Start site prediction

Most algorithms are greedy, taking the largest
ORF

m Overlapping Genes

This can be very problematic, esp. with use of
Viterbi-like algorithms

m Non-canonical coding



After Gene Finding...

m  Genome annotation
Gene function, including domain analysis
Gene functional group
Pathway analysis

Specific functional group you interesting....
= Virulence genes
m Pseudogenes
m TCS

m Other Genome characteristic
GC content......
Genome islands
IS, transposons



Genome Annotation

m Gene Function
Blast to NR database

Domain analysis
m Pfam (http://www.sanger.ac.uk/Software/Pfam/)
m InterPro (http://www.ebi.ac.uk/interpro/)

m Gene Cluster
COG (http://www.ncbi.nlm.nih.gov/COG/)

m Pathway

KEGG pathway
(http://www.genome.jp/kegg/pathway.html)



http://www.sanger.ac.uk/Software/Pfam/
http://www.ebi.ac.uk/interpro/
http://www.ncbi.nlm.nih.gov/COG/
http://www.genome.jp/kegg/pathway.html

Annotation nomenclature

m  Known Gene - Predicted gene matches the entire
length of a known gene.

m Putative Gene - Predicted gene contains region
conserved with known gene. Also referred to as
“like” or “similar to”.

m  Unknown Gene - Predicted gene matches a gene or
EST of which the function is not known.

m Hypothetical Gene - Predicted gene that does not
contain significant similarity to any known gene or
EST.
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Pathway Analysis
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Virulence factors

m Virulence factors refers to the properties (i.e.,
gene products) that enable a microorganism to
establish itself on or within a host of a particular
species and enhance Its potential to cause disease.

m Virulence factors include bacterial toxins, cell
surface proteins that mediate bacterial
attachment, cell surface carbohydrates and
proteins that protect a bacterium, and hydrolytic
enzymes that may contribute to the pathogenicity
of the bacterium.



Identify potential virulence factors

LTA

Cell wall

‘% ; .
|- I

Cyloplasmic
mambrana

Cytoplasm  LPXTG  Hydrophobic  GW  Lipoprotein
profein  tail protein protein

Trends Microbiol. 2002 May;10(5):238-45.
Surface proteins and the pathogenic potential of
Listeria monocytogenes.



Common mechanisms of antimicrobial
resistance in microbes and viruses

Alterations in drug target or activating enzyme™®

Inactivation by enzymes®

Changes in cellular permeability towards the drug®

Active efflux®

Overproduction of target enzymes

Bypass of drug action

Intercellular cooperation??

*These represent the major mechanisms of bacterial resistance
*This is the only mechanism of relevance to viruses

Microbial and viral drug resistance
mechanisms
Trends Microbiol. 2002;10(10 Suppl):S8-14.



Two-component signaling systems
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Arrangement of TCS genes in two
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Genomic islands

TABLE 1. Methods to ahalyse bacterial strains for the presence of GEFPA-reiated genessequences

Method Aim Useful for
routine
diagnostics

GENPAR-specific PCR | Detection of GEIPAI genes Yes

DMA-chip analsis Simultaneous detection of GEIIPAl-associated genes and Yes

their expression

tRMA screening Detection of integration in tRMNA genes Limited

Subtractive Detection of genomic differences Mo

hhiridization

[sland probing Analysis of GEl instability Mo

Impact of pathogenicity islands in bacterial
diagnostics.
Apmis 112 (11-12), 930-936.



Characteristics of genomic islands
Genomic Island

Core Core
genome .' r - v i genome
“u tRNA int | Gene1  Gene 2 IS Gene3 IS |
— o - Bl S —
DR DR

Functions encoded by Genomic Islands:

Pathogenicity, Iron Uptake, Secondary Metabolism,
Antibiotic Resistance, Secretion, Degradation of Xenobiotics, Symbiosis

Impact of pathogenicity islands in bacterial diagnostics.
Apmis 112 (11-12), 930-936.



Characterization of anomalous
Genomic i1slands

m  Genomic characterization:

Compositional contrasts (standard method): compare G+C
frequency within W to the average genomic G+C frequency.

Genome signature contrasts: compare 6* differences of each
window segment to the average genomic signature.

Codon usage contrasts: compare codon biases of the gene set
of each window to the average gene codon usages.

Amino acid contrasts: compare amino acid biases of proteins
In each window relative to the average proteome amino acid
frequencies.

Putative alien (pA) gene clusters: compare differences in
codon usages from the RP, TP and CH gene classes, and from
the average gene.

IS sequences, transposonase, tRNA
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How to do Comparative Genomics

m Genome sequences alignment
BlastN, MUMmer

m Gene content comparison
BlastP



Genome sequences alignment

m Genome islands (a cluster of genes)

m Indels
Transpons
Tandem repeats

m SNPS

Sense-Nonsense substitutions
Synonymous/non-synonymous substitutions
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Genomic comparison
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Gene content comparison

m Homolog
Ortholog
Paralog

m Specific genes



General Information

streptococcus_suis_89 SS_Sanger_1-
1591 7
Total CDS number 1918 1969
CDSs categorized by sequence variations
All homologs 1351 1341
Total ortholog 1306 1306
Orthologs with identical nucleic acid 31 31
sequences
Orthologs with SNPs and the same length 848 848
Orthologs with insertoins/deletions 427 427
Paralogs 45 35
Unique compare to each other 567 628




Towards System Level

Basic Terms of Transcriptional Regulation in Microbe
A Quick Overview of Transcriptional Regulation Investigation
Methodology of Gene Network Inference

How to infer gene networks from expression profiles
Classic Case Studies

Other Branches
Comparative Analysis in the Light of Evolution
Learning Biological Networks from Modules to Dynamics
Prof. Palsson’s Strategy: Integration of Kinds of Networks



Basic Terms of Transcriptional Regulation in Bacteria

m A Transcription Unit (TU)

a regulatory region
a transcription start site
one or more ORFs

and a transcription termination site.

m An Operon

The collection of overlapping TUs constitutes an operon

m Cis Elements/Transcription Factor Binding

Sites (TFBS)

The regulatory region contains cis elements such as the promoter

400 base pairs




Basic Terms of Transcriptional Regulation in Microbe

>

Transcription initiation in bacteria requires proteins known as
sigma factors (6) that essential for proper promoter recognition by
RNA polymerase.

670 and 654'

TFs are classified in several families based on at least two
domains:

a signal sensor and

a responsive element that directly interacts with a target DNA, helix—
turn—helix domain is the most common

two-component systems
Regulon
a set of TGs coregulated by the same set of TFs

Regulons are divided into simple or complex(majority) if regulated by a
single or by multiple TFs, correspondingly.

RegulonDB



Operon prediction

m Genes are grouped into operons
(transcriptional units)

promoter gene gene gene terminator
\_ start st_oW -

operon



modulons

stimulons

regulons




A Quick Overview of Transcriptional Regulation

Investigation

Identifying
Transcription
Factor
*Which Database?
*Comparing!
*Which Format?
*Chang to my format! ‘

Expression
correlation

*Learning R package? O

*Write scripts?
*Debug! .

*Validation?

Motif scan
*Which program? O

*Install/configure

*Format inputs/outputs .

*Validation?

~ Build up
network
*Which Software? O

eLearn

*Format inputs/outputs .

*Validation?



Collect Existing Microarrays

178 microarrays
69 conditions

Condition Screening  Generate New Microarrays

Qowrerwres
(. Koockou
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VY VY

268 microarrays
121 conditions

Figure 1. Overview of Our Approach for Mapping the E. coli Transcriptional Regulatory Network

Escherichia coli
Array CompENDIUM

445 microarrays
189 conditions

[mput

LeARNING ALGORITHM
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1

RecuonDB
~3200
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Polymerase
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Microarray expression profiles were obtained from several investigators. Our laboratory profiled additional conditions, focusing on DNA damage, stress
responses, and persistence. These two data sources were combined into one uniformly normalized E. coli microarray compendium that was analyzed
with the CLR network inference algorithm. The predicted regulatory network was validated using RegulonDEB, sequence analysis, and ChIP. The
validated network was then examined for cases of combinatorial regulation, one of which was explored with follow-up real-time quantitative PCR

experiments.




Computational approaches to investigate
transcriptional regulatory networks

m  Template-based method
Coexpression networks and clustering algorithms
Network Alignment

m Reverse engineering using gene expression data (network
Inference)

DREAM is a Dialogue for Reverse Engineering
Assessments and Methods with its main objective to
catalyse the interaction between experiment and theory in
the area of cellular network inference
(http://wiki.c2b2.columbia.edu/dream/).




Gene network inference algorithms

Bayesian networks
Information-theoretic approaches
Ordinary differential equations

Choose the most suitable network
Inference algorithms according to the
problem to be addressed.

Mol Syst Biol 2007, 3:78




Bayesian networks

A Bayesian network is a graphical model for probabilistic relationships
among a set of random variables X;, where i=1 ... n.

In order to reverse-engineer a Bayesian network model of a gene network,
we must find the directed acyclic graph G (i.e. the regulators of each
transcript) that best describes the gene expression data D, where D is

assumed to be a steady-state data set. P(D/C)P(C
P(G/D) = "B

Choosing the G with the maximum Bayesian score is an NP-hard problem.
Therefore, a heuristic search method is used, like the greedy-hill climbing
approach, the Markov Chain Monte Carlo method or simulated annealing.

Bayesian networks cannot contain cycles(i.e. no feedback loops). Dynamic
Bayesian networks are an extension of Bayesian networks able to infer
interactions from a data set D consisting of time-series rather than steady-
state data.



Information-theoretic approaches

Information-theoretic approaches use Mutual Information (M), to compare
expression profiles from a set of microarrays.

Mutual information, MI;, between gene { and gene j is
computed as:

MI;j = H; + H; — Hj (3)

where H, the entropy, is defined as:

Hy = =) plxe) log(p(xy)) (4)

k=1
The higher the entropy, the more randomly distributed are gene expression
levels across the experiments.A higher Ml indicates that the two genes are
non-randomly associated to each other.

Ml is symmetric,M,.j=Mj,., therefore the network is described by an
undirected graph G, thus differing from Bayesian networks (directed acyclic
graph).

Deal with steady-state gene expression data set, or with time-series data as
long as the sampling time is long enough to assume that each point is

independent of the previous points.



START Infer a gene network? Predict targets of a
(Expression data) perturbation?
Yes l‘r’es
ARACNE(*) 3
Time What kind of What kind of Time
BANJO (DBN) Exprassion exXpression N "‘ TSNI
CLUSTERING senes data? data? Series
7 7 )
Steady state Steady state
ARACNE
BAMNJO (BM) MMI
NIR MIR
CLUSTERING

Figure 1 Flowchart to choose the most suitable network inference algorithms according to the problem to be addressed. (*): check for independence of time points
(see text for details); (BN): Bayesian networks; (DBN): Dynamic Bayesian Networks.

Table I Features of the network inference algorithms reviewed in this tutorial

Software Download Data Command line Motes
tvpe
BANIO www.cs.duke.edu/ ~ amink/ s5/D java-jar banjo.jar setting- Good performance if large datasets
software/banjo File=mysettings.txt is available (M3 N)
ARACNE amdec-bicinfo.cu-genome.org/html/ S/D arance-i inputfile-o Good performance even for M= N. Not useful
caWork-Bench/upload/arcane.zip outputfile [options] for short time series
NIR/MNI* tgardner@bu.edu 5 MATLAB NIR: good performance but requires knowledge

of perturbed genes/MNI: good performance for
inferring targets of a perturbation

Hierarchical http://bonsai.ims.u-tokyo.ac.jp/ S/D GUI Useful for finding coexpressed genes,
clustering mde-hoon/software/cluster but not for network inference

Abbreviations: D: dynamic time-series; N: number of genes; M: number of experiments; 5: steay-state.
*Predicts only targets of a perturbation (see text for details).



m A regulatory module is a set of genes that are regulated in
concert by a shared regulation program that governs their

behavior.

m A regulation program specifies the behavior of the genes in
the module as a function of the expression level of a small set

of regulators.
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Pre-processin - :
F 9 | selection Data selection

Candidate regulators Expression data

_______________________________________________________________________

i Clustering . i
i Regulation Gene partition | — ] i
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| Module network : |
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1 |
g g S
Modules Motif Annotation
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= h «4——| Graphic presentation

Hypotheses & validation

Annotations
[ &

Conditions

Post-processing

Figure 1 Overview of the module networks algorithm and evaluation
procedure. The procedure takes as input a data set of gene expression
profiles and a large precompiled set of candidate control genes. The method

Input a gene expression data
set and a large precompiled set
of candidate regulatory genes,
containing both known and
putative transcription factors
and signal transduction
molecules.

The algorithm searches
simultaneously for a partition
of genes into modules and for
a regulation program ( )
for each module that explains
the expression behavior of
genes in the module.

The procedure gives as output

a list of modules and

associated regulation programs,
generating testable hypotheses

in the form 'regulator X

itself (dotted box) is an iterative procedure that determines both the partition regulates module Y under

of genes to modules and the regulation program (right icon in dotted box) for
each module. In a post-processing phase, modules are tested for enrichment
of gene annotations and cis-regulatory binding site motifs.

conditions W'


http://www.nature.com/ng/journal/v34/n2/full/ng1165.html
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Amino acid
metabolism
Energy
and cAMP
signaling
DNA and RNA
processing Figure 5 Global view and higher order organization of modules. The graph
depicts inferred modules (middle; numbered squares), their significantly
enriched cis-regulatory motifs (right; significant motifs from Fig. 4a) and their
associated regulators (left; ovals with black border for transcription factors or
/4 with green border for signal transduction molecules). Modules are connected
_\/ <] to their significantly enriched motifs by solid blue lines. Module groups,
Q‘f’; consisting of sets of modules that share a commaon motif, and their
42 MCM1 associated motifs are enclosed in bold boxes. Only connected components
N30 that include two or more modules are shown. Motifs connected to all modules
e of their component are marked in bold. Modules are also connected to their
:,_,.:l'-'-"GCW predicted regulators. Red edges between a regulator and a module are
N supported in the literature: either the module contains genes that are known
T fEgle——HSF . .
' T xBP1 targets of the regulator (Table 1, G column) or upstream regions of genes in
: —— HACT the module are enriched for the cis-regulatory motif known to be bound by the
N36 regulator (Table 1, M column). Regulators that we tested experimentally are
Al ABF C Nuclear marked in yellow. Module groups are defined as sets of modules that share a
B single significant cis-regulatory motif. Module groups whose modules are
Ll Module (number) functionally related are labeled (right). Modules belonging to the same
> Regulator (signaling molecule) . . . .o
O Regulator (transcription factor) module group seem to share regulators and motifs, with individual modules
' Inferred reguiation having different combinations of these regulatory elements.

Reqgulation supported in literature

| Enriched cis-regulatary matif
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Collect Existing Microarrays

ComainaToriAL REcuLon
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69 conditions Escherichia coli k'“' K
Input | LEARNING ALGORITHM | predict Validate i
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RecuLonDB =
. ~3200 new conditions + gPCR
Antibiotic experimentally determined
regulatory interactions
<« Toxin —» SEQUENCE ANALYS|S ChiP
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Figure 1. Overview of Our Approach for Mapping the E. coli Transcriptional Regulatory Network

Microarray expression profiles were obtained from several investigators. Our laboratory profiled additional conditions, focusing on DNA damage, stress
responses, and persistence. These two data sources were combined into one uniformly normalized E. coli microarray compendium that was analyzed
with the CLR network inference algorithm. The predicted regulatory network was validated using RegulonDEB, sequence analysis, and ChIP. The
validated network was then examined for cases of combinatorial regulation, one of which was explored with follow-up real-time quantitative PCR
experiments.

DNA
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Figure 2. The CLR Algorithm: Methods and Comparison to Other Approaches

(A) A schema of the CLR algorithm. The z-score of each regulatory interaction depends on the distribution of Ml scores for all possible regulators of the
target gene (z;) and on the distribution of Ml scores for all possible targets of the regulator gene (z;).

(B) Precision and recall for several different network inference methods applied to all genes in the E. coli microarray compendium were calculated using
RegulonDB. The number of correctly inferred interactions (within RegulonDB) for each recall value is labeled on the top of the chart. All algorithms
performed far better than the random method. Both CLR and relevance networks reach high precisions, but CLR attains almost twice the recall of
relevance networks at some levels of precision.

(C) Using 60 well-chosen arrays, we can infer a network, nearly equivalent in recall and precision to the network inferred using all 445 microarrays in the
compendium (dotted horizontal line), reflecting the redundancy of the compendium and the potential for improvement in choosing subsequent
perturbations to profile.
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fecABCDE is an operon that encodes
a ferric citrate transporter and plays
a central role in the import of
cellular iron. Existing literature
described only two regulators of
fecABCDE—Fecl and Fur.The Fur
regulation is not apparent in the
compendium (Figure 6A), while the
Fecl regulation is clear (Figure 6B).
However, the bifurcation of the plot
suggests a more complex
combinatorial regulation for
fecABCDE.The CLR algorithm
identified PdhR, a pyruvate-sensing
repressor and necessary component
of the energy transduction cascade,
as a possible additional regulator of
the fecA operon (Figure 6C).We also
identified a potential PdhR binding
motif in the promoter region of the
operon (Figure 6D and 6E).
Moreover, in undefined, rich media
(Luria-Bertani [LB] with 0.2%
glucose), our ChIP results showed a
significant enrichment for PdhR-fecA
binding when judged by a t-test (p
value = 0.004) and a modest
enrichment using a nonparametric
rank-sum test (p value = 0.1).


http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0050008&ct=1&SESSID=b11b050f934c1c4e55ac622d8a1779d9
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Comparative Analysis in the Light of Evolution
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Comparable data for two
(or more) organisms

Orthology mapping

=== QOne-to-one orthologs Refs. 4,6,7,13,23

—— One-to-many orthologs Refs. 34-37,39

- Many-to-many orthologs Refs. 22,31,32,42

/\\\

Similarities Differences
Conservation Divergence
Purifying selection due Nonfunctional divergence Functional adaptation
to functional importance by genetic drift via positive selection
Loss of function
due to lack of selection
Refs. 1,2,4,21,22,48 Refs. 6,25,36,37,42,49 Refs. 46,50,51

Principles of comparative analysis. Comparative analysis typically starts by collecting comparable data for two or more organisms. To compare the
datasets, an orthology mapping and the type of orthology comparison have to be determined. Three types of comparisons are shown: (i)
many-to-many, which considers all potential orthology relationships [22°,31,32,42%; (i) one-to-one, which considers only the best match of each gene
and in some cases excludes ambiguities (i.e. the middle gene in the right circle) [4**,6%,7,13*,23%; (il one-to-many, which focuses on gene duplication
and losses [34-37,39]. After the compared objects have been determined, their inter-species similarities are examined. Objects with significant
similarity can be identified, which suggests that they were evolutionarily conserved.This conservation may be interpreted as the result of purifying
selection and therefore as an indication for functional importance [1,2,4%,21,22°,48%. Conversely, objects with significant differences are likely to be
evolutionarily divergent. This divergence may be associated with either a functional change, being the result of positive selection or lack of selection
[6*.25%.36,37,42* 49], or functionally neutral, being the result of random drift [48,50,51]. Several references are given as examples for each scenario.



reconstruct a genome-wide metabolic network
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Towards Multidimensional Genome Annotation
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A Workflow

Biological databases and M. barkeri draft Fully annotated
Automated reconstructions genome annotation genomes
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: Requirements
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Model validation

- Uptake and
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- Growth Yields

Secretion Rates
" - Knockout growth /

Molecular Systems Biology 2 Article number: 2006.0004 doi:10.1038/msb4100046 .

wild type

s A=37
@8 B=28

The iterative model building procedure
used to generate iAF692. The draft
genome annotation was used as a
scaffold, on which GPR assignments
were made. The reactions added to the
model were taken from both biochemical
databases and published data. Once a
reaction was found to be in the network,
it was manually curated and either
associated to a potential ORF or added
with no gene assignment. A biomass
objective function was formulated to
perform model simulations based on
cellular composition. Modeling
simulations were run under steady-state
conditions to determine the reaction flux
distribution in the network. The results
from the simulations were interpreted
and compared to experimental data.
From the comparison, physiological
capabilities of the cell were confirmed or
the network was further refined or
updated.



Metabolic network reconstruction mainly involves:

Level 1: Metabolite specificity
Primary metabolites

T Em

Level 2: Metabolite formulae
Neutral formulae

[CHo;] [EHOS [C.HuNO.P,

Charged formulae

|E ;H.0, | E‘?l")o; I [C,,l‘lu,N,O,.P,'] {C,,l'l,,N,O,,P,"J

Level 3: Stoichiometry
1 LAC + 1 NAD ?

Coenzymes
A

NAD NADH

[CuHuN.0.P|

1PYR+1NADH +1H

Level 4: Thermodynamic considerations and/or directionality
1LAC+1NAD <—> 1PYR+1NADH +1H

Level 5: Localization

Prokaryotes
r—‘A*
[c]: cytoplasm [n): nucleus [m]: mitochondria
(e): extracellular [g): golgi aparatus [x]: peroxisome
[pl: periplasm [v]: vacuole {h]: chloroplast
[ll: lysosome [rl:  endoplasmic
reticulum

-

tukat"yoles
1LAC [c] + 1 NAD [¢] ==+ 1PYR[c]+ 1NADH[c] + 1H[c]

Copyright @ 2006 Nature Publishing Group
Nature Reviews | Genetics

Reed et al. Nature Reviews Genetics 7, 130-141 (February 2006) | doi:10.1038/nrg1769

Step-wise incorporation of information

Y

1.

2.
3.
A

Metabolite specificity of an enzyme
Molecular formulae

Stoichiometry

Directionality or reversibility from
biochemical study and
thermodynamic properties
Localization of reactions and proteins
to specific cellular compartments.

B Incorrect substrate specificity
M Reaction reversibility is not defined.

B Enzyme subunits are shown as catalyzing
a reaction independently although they are
active only in a complex.

B Cofactor requirements are often specific
for the given organism and have to be found
elsewhere.

M Several reactions that are necessary for
making a functional cell have not been
assigned a corresponding ORF.

Genome Res., Vol. 15, No. 6. (1 June 2005), pp. 820-829



Sources of information and involved data types:

KECG BREMDA  UniProtkKB Entrez PubChem MetaCyc Transport TIGR PSORTdb
Gene DB

Information about the definition of metabolic reactions

Substrate specificity v W W v -.-r

Metabolite formulae ¥ W W W

Stoichicmetry ¥ W W W

Reaction W W W )

directionality

Subcellular o W o
lexc alization

Other information about metabolic-reaction properties

Genome sequence W W W W
and annotation

GPR assaciations W W W W

Literature W ' W W ' W

PR associations, gene=protein-reaction associations.

Textbooks and literature:

Biochemical data, such as characterization of enzymes, essentiality of enzymes or genes.
Physiological data, such as minimal medium requirements and favorable growth environments.
Phylogenetic data are useful when a particular organism is not well studied but a close relative is;
in these cases information can be inferred from a close relative.

Reed et al. Nature Reviews Genetics 7, 130-141 (February 2006) | doi:10.1038/nrg1769



Representation of a reconstructed metabolic network:

1. Textually

2. Graphically - A map of
nodes and edges can be
useful for analyzing
topological features of a
network.

3. Mathematically as a matrix

Abbreviation  Glycolytic reactions Genes

HEX1 [c]GLC + ATP =» G6P + ADP + H glk

PGl [c]GOP - FGP pgi

PFK [C]ATP + F6P=> ADP+ FDP + H pfkA, pfkB

FBA [c]FDP <> DHAP + G3P JbeA. fbaB

IPI [c]OHAP < G3P tpiA

GAPD [c]G3P + NAD + Pl «>13DPG « H+ NADH  gapA, gapC1, gapC2
PGK [c]13DPG + ADP < 3PG + AlP pgk

PGM [c]3PG -» 2PG gpmA, gpmB

ENO [c]2PG - H,0O + PEP eno

PYK [c]JADF + H + PEP —» ATP + PYR pykA, pykF
ATP -1 0 =1 0 0 0 1 0 0 1
GLC =1 0 0 0 0 0 0 0 0 0
ADP 1 0 1 0 0 0 -1 0 0 -1
GopP 1 -1 0 o 0 0 0 0 0 0
H 1 0 1 0 ] 1 0 0 0 -1
FeP 0 o -1 0 0 0 0 0 0 0
FOP 0 0 3i -1 0 0 0 0 0 0
DHAP 0 0 0 1 -1 0 0 0 0 0
G3P 0 0 0 1 =1 -1 0 0 0 0
NAD 0 0 0 0 0 -1 0 0 0 0
Pl 0 0 0 0 0 -1 0 0 0 0
13DPG| 0 0 0 0 0 1 -1 0 0 0
NADH | 0 0 0 0 0 1 0 0 0 0
3PG 0 0 0 0 0 0 1 -1 0 0
2PG 0 0 0 0 0 0 0 1 -1 0
PEP 0 0 0 0 0 0 0 0 1 -1
HO 0 0 0 0 0 0 0 0 1 0
PYR 0 0 0 0 0 0 0 0 0 1

HEX1 PGl PFK  FBA TPl GAPD PGK PGCGM ENO PYK

Voo '

Leno | | pykF | | pykA |

& @ &
b1779] [bi416 [b1417]
} } }
[gapA | [gapC2| [gapC1

B

and

|
A\

HEX1

Copynght © 2006 Nature Publishing Group
Nature Reviews | Genetics



Network Evaluation

a Precursor metabolite
formation

kg

Succinyl
CoA

b Incorporating biomass c F‘lling network gaps
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5p Proteins ‘eee £
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Free amino acids 1.1 d P/O ratio calculation

—
Carbohydrates
@x Monosaccharides
|3
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Disaccharides
Trehalose
Oligosaccharides
Polysaccharides
Glycogen
Mannan
Other carbohydrates
Nucleotides
RNA
DNA
Lipids
Ash
Total

hysiological-data comparison

1.5H"  3H'

@
&

! TP,

- i 3 +
IH*
334 ’ € ATP-maintenance calculation
18.4 = |
6.3 g
0.4 ié' ATP,,
29
5 0 &E' ATPll'u'lu\\
101.4 =3
D(h")

g Knockout-data comparison

—— [

qCO, (mmol gDW' h') =

@ Experiment
= Model

D (h)

q0, (mmol gDW* h'')

@ Experiment
= Model |

D (h™) Knockout strains

Environment

Copyright @ 2008 Nature Publishing Group
Nature Reviews | Genetics



Gap Finding and Filling ,}_{.A_Ldn—Lo}—L-

D=0.1 % (wi'w) . .

Proteins List the biomass components that the
Amino acids 45.0 organism is known to generate and a
Free amino acids 1.1 ;

Carbohydrates complete set of anabolic pathways to

Monosaccharides synthesize the biomass components. And
Disaccharides compare these with what the reconstructed

Trehalose 0.8 network is able to generate.
Oligosaccharides

Polysaccharides

Clycogen B.4
Mannan 13.1
Other carbohydrates 158.4
Nucleotides
RN_:"—"L 6.3 T rip
DNA 0.4 =Qo0-oreg,
Lipids 2.9 e
Ash 5.0
Total 101.4 Qo o
=ip
List the precursor metabolites that are g
required for the synthesis of biomass
- 3
components, and compare these with ”
what the network is able to generate. -
=
¥

AcetylCos
=t

P
kg
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Gap Finding and Filling ,}_{.A_Ldn—Lo}—L-

List other special metabolites that the organism is known to produce or
degrade, and compare these with what the network is able to produce or
degrade.

Collect biochemical data, such as essential enzymes; physiological data, such as
the growth capabilities, minimal medium requirements and favorable
growth environments. This information can be used to identify missing
reactions.

Analytical tools can also be used to identify network gaps that involve
reactions (blocked reactions or pathway holes) or metabolites (dead-end
metabolites) that are isolated from the rest of the network.



A stoichiometric matrix, S (mXn), was constructed for the metabolic network
where m is the number of metabolites and n is the number of reactions. The
corresponding entry in the stoichiometric matrix, S;;, represents the stoichiometric
coefficient for the participation of the ith metabolite in the jth reaction.

The linear steady-state problem can be represented by the equation:
Sv=0

where v(n x 1) is a vector of reaction fluxes.

To find a solution for v, the cellular objective of producing the maximal
amount of biomass constituents, represented by the ratio of metabolites in
the BOF, is optimized in the linear system.

constraints that are imposed on the system are in the form of:
L=< (2)
where o; and [; are the lower and upper limits placed on each reaction

flux, v;, respectively. For reversible reactions, —oo <v;< oo, and for
irreversible reactions, 0<v; < o0,



B Growthrate (h™)

Sensitivity Analysis

A Frsmconeslion L 1B BhAcompaelion L 20 Sensitivity analysis on the

modeling parameters used in
analyzing iAF1260. The
- 12 relationship between the GUR
(mmol gDW-? h-1) (bottom axes,
the dependant variable) and the
[ resulting (1) GR (h1) (left axes)
0 and (2) OUR (mmol gDW! h-1)
(right axes) produced during the

D P/O ratio _ sensitivity analysis using 1IAF1260.
[ Al Using FBA and iAF1260, optimal
growth was simulated under
glucose aerobic conditions while
varying (A) the dry weight
percentage of protein (50-80%), (B)
RNA (10-25%) and (C) lipid (7—
15%) in the BOF -, Using
physiologically measured values.
Also analyzed was (D) potential
P/O ratios (1.0-2.7) in the network,
as well as the (E) NGAM (=£50%)
and (F) GAM (£50%) that were
determined for these conditions.
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Gene Essentiality Analysis

Table V Computational essentiality predictions

Experimental
Essential Non-essential
Computational
Essential 159 (13%) 29 (2%)
Non-essential 79 (6%) 993 (79%)

To determine the effect of a gene deletion, the reaction(s)
associated with each gene in iIAF1260 were individually deleted
from S and FBA was used to predict the mutation growth
phenotype. The simulations were performed using glucose
minimal medium conditions with a GUR of 10 mmol gDW-! h,
an OUR of 20 mmol gDW! h-, the BOF ke, an NGAM of 8.39
mmol ATP gDW h-t, a GAM of 59.81 mmol ATP gDW and zero
flux through the 152 reactions regulated under glucose aerobic
conditions. The flux through the BOF-yge Was optimized in the
mutated network, S', and a positive flux through the BOF
(VBOF,.>0) was considered non-essential. Experimental criteria
for gene essentiality are described in detail in

Adam M Feist et.al Molecular Systems
Biology 3 Article number:
121 doi:10.1038/msh4100155 .


http://www.nature.com/msb/journal/v3/n1/full/msb4100155.html
http://www.nature.com/msb/journal/v3/n1/full/msb4100155.html
http://www.nature.com/msb/journal/v3/n1/full/msb4100155.html
http://www.nature.com/msb/journal/v3/n1/full/msb4100155.html

Growth Condition Analysis

Table IV Growth condition analysis

Computational Experimental Agreement (1AF1260/iJR904) Disagreement ({AF1260/iJR904)
Potential Support  Total possible E-G E-NG % Total E-NG E-G % Total
Source substrates  growth® comparisons C-G C-NG C-G C-NG
Carbon 262 174/90 87 54/46 11/15 75%/70% 22/18 0/8 25%/30%
Nitrogen 163 78/34 51 28/24 8/12 71% /71 % g/4 7/ 299% /29%
Phosphorous 63 49/4 20 20/3 0/0 100% /15Y% 0/0 0/17 0% /85%
sulfur 25 11,2 12 8/2 0/0 67% /17 % 0/0 4/10 33%/83%

“Results using the (AF1260/1JR904 computational model; G, growth; NG, no growth; E, experimental; C, computational.

To determine the carbon, nitrogen, phosphorus and sulfur sources that could support simulated
growth, we screened all of the metabolites that could be exchanged with the environment (i.e.,

exchange reactions) in the iIAF1260 and iJR904 models. The identified metabolites formed the
potential substrate sets.

If a positive flux could be generated through the BOF ke reaction (vBOFcore>0), then the
substrate was considered a viable source. Experimental data used in the comparison were
provided by Biolog (http://www.biolog.com)

Adam M Feist et.al Molecular Systems
Biology 3 Article number:
121 doi:10.1038/msh4100155 .


http://www.biolog.com/

Notes for evaluation of network reconstruction:

m  Network evaluation is highly dependent on the availability of data, especially
physiological data, which can often be the most limiting factor.

» Network reconstruction is an iterative process, involving
network evaluation, genome re-annotation and the availability
of new experimental data.



Significance of such work
A knowledge database for an organism with information

ranging from genome to metabolism.

Analyzing high-throughput data such as transcriptomic,
proteomic and metabolomic data in the context of network
reconstruction (that 1s, ‘putting content into context’)
provides the means to improve the accuracy of the network
reconstruction, to evaluate the consistency of various
heterogeneous data sets within the context of functional
roles, to generate testable hypotheses that drive experimental
discovery.
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